Cho mặt phẳng ( α ) : 2 x - 3 y - 4 z + 1 = 0 . Khi đó, một véc- tơ pháp tuyến của ( α )
A. n → = ( - 2 ; 3 ; 1 )
B. n → = ( 2 ; 3 ; - 4 )
C. n → = ( 2 ; - 3 ; 4 )
D. n → = ( - 2 ; 3 ; 4 )
Trong không gian Oxyz, cho mặt phẳng ( α ) có phương trình d 1 : x = 1 + 3 t y = 4 + t z = - 1 + 2 t , d 2 : x - 2 - 3 = y 2 = z - 4 - 2 .Phương trình đường thẳng ∆ nằm trong mặt phẳng ( α ) , cắt cả hai đường thẳng d 1 , d 2 là
A. x + 2 8 = y - 1 - 7 = z + 3 1
B. x - 2 - 8 = y + 1 7 = z - 3 - 1
C. x + 2 8 = y - 1 7 = z + 3 - 1
D. x - 2 - 8 = y 7 = z - 3 1
Trong không gian Oxyz, cho điểm M (1;1;-2) và mặt phẳng (α) : x - y - 2z = 2. Viết phương trình mặt cầu (S) có tâm M tiếp xúc với mặt phẳng (α)
Lời giải:
Bán kính mặt cầu là:
\(R=d(M, (a))=\frac{|1-1-2(-2)-2|}{\sqrt{1^2+1^2+2^2}}=\frac{\sqrt{6}}{3}\)
PT mặt cầu $(S)$ là:
$(x-1)^2+(y-1)^2+(z+2)^2=\frac{2}{3}$
Trong không gian Oxyz, cho mặt phẳng ( α ) : 2 x + y - 2 z - 2 = 0 đường thẳng d : x + 1 1 = y + 2 2 = z + 3 2 và điểm A 1 2 ; 1 ; 1 . Gọi ∆ là đường thẳng nằm trong mặt phẳng ( α ) , song song với d đồng thời cách d một khoảng bằng 3. Đường thẳng ∆ cắt mặt phẳng (Oxy) tại điểm B. Độ dài đoạn thẳng AB bằng
A. 7 3
B. 7 2
C. 21 2
D. 3 2
Đáp án B
Phương pháp:
thay tọa độ điểm B vào phương trình ( α ) => 1 phương trình 2 ẩn a, b.
Sử dụng công thức tính khoảng cách
lập được 1 phương trình 2 ẩn chứa a, b.
+) Giải hệ phương trình tìm a,b => Toạ độ điểm B => Độ dài AB.
Dế thấy
Ta có
Lại có
Đường thẳng d đi qua M(0;0;-1), có u → = ( 1 ; 2 ; 2 )
Do đó
Vậy AB = 7 2
Trong không gian Oxyz, cho hai mặt phẳng P : x - 3 y + 2 z - 1 = 0 , Q : x - z + 2 = 0 . Mặt phẳng α vuông góc với cả (P) và (Q) đồng tời cắt trục Ox tại điểm có hoành độ bằng 3. Phương trình của α là
A. x + y + z - 3 = 0
B. x + y + z + 3 = 0
C. - 2 x + z + 6 = 0
D. - 2 x + z - 6 = 0
Cho điểm M(1; 4; 2) và mặt phẳng (α): x + y + z – 1 = 0 Tìm tọa độ điểm M' đối xứng với M qua mặt phẳng (α).
M’ đối xứng với M qua (α)
⇒ H là trung điểm MM’
⇒ M’(-3; 0; -2).
Trong không gian Oxyz, cho điểm A(–1;3; –2) và mặt phẳng (α): x – 2y – 2z + 5 = 0. Khoảng cách từ điểm A đến mặt phẳng (α) bằng:
A. 1
B. 2 3
C. 2 9
D. 2 5 5
Đáp án B
Phương pháp: Xét M(x0;y0;z0), (α): Ax+By+Cz+D = 0
Khoảng cách từ M đến (α) là:
Cách giải: Khoảng cách từ A đến (α) là:
Trong không gian với hệ trục tọa độ Oxyz, cho hai mặt phẳng α : x + y - z + 1 = 0 v à β : - 2 x + m y + 2 z - 2 = 0 . Tìm m để mặt phẳng (α) song song với mặt phẳng (β).
A. m = 2
B. m = 5
C. Không tồn tại
D. m = -2
Cho mặt cầu ( S ) : ( x + 1 ) 2 + ( y - 2 ) 2 + ( z - 3 ) 2 = 25 và mặt phẳng ( α ): 2x+y-2z+m=0. Các giá trị của m để ( α ) và (S) không có điểm chung là:
A. m ≤ - 9 hoặc m ≥ 21
B. m < - 9 hoặc m > 21
C. - 9 ≤ m ≤ 21
D. - 9 < m < 21
Trong không gian tọa độ Oxyz, cho A(-3;3;-3) thuộc mặt phẳng ( α ) có phương trình 2x - 2y + z + 15 = 0 và mặt cầu (S): ( x - 2 ) 2 + ( y - 3 ) 2 + ( z - 5 ) 2 = 100 . Đường thẳng qua ∆ , nằm trên mặt phẳng ( α ) cắt (S) tại M, N. Để độ dài MN lớn nhất thì phương trình đường thẳng ∆ là
A. x + 3 1 = y - 3 4 = z + 3 6
B. x + 3 16 = y - 3 11 = z + 3 - 10
C. x = - 3 + 5 t y = 3 z = - 3 + 8 t
D. x - 1 3 = y - 3 - 1 = z + 3 3
Cho điểm M(1 ; 4 ; 2) và mặt phẳng (α): x + y + z -1 = 0.
a) Tìm tọa độ điểm H là hình chiếu vuông góc của điểm M trên mặt phẳng (α) ;
b) Tìm tọa độ điểm M' đối xứng với M qua mặt phẳng (α).
c) Tính khoảng cách từ điểm M đến mặt phẳng (α).
a) Xét đường thẳng d qua M và d ⊥ (α).
Khi đó H chính là giao điểm của d và (α).
Vectơ (1 ; 1 ; 1) là vectơ pháp tuyến của (α) nên là vectơ chỉ phương của d.
Phương trình tham số của đường thẳng d có dạng: .
Thay tọa độ x ; y ; z của phương trình trên vào phương trình xác định (α), ta có:
3t + 6 = 0 => t = -2 => H(-1 ; 2 ; 0).
b) Gọi M'(x ; y ; z) là điểm đối xứng của M qua mặt phẳng (α), thì hình chiếu vuông góc H của M xuống (α) chính là trung điểm của MM'.
Ta có:
=> x = -3 ;
=> y = 0 ;
=> z = -2.
Vậy M'(-3 ; 0 ;2).
c) Tính khoảng cách từ điểm M đến mặt phẳng (α) bằng 2 cách sau:
Cách 1: Áp dụng công thức ta có:
.
Cách 2: Khoảng cách từ M đến (α) chính là khoảng cách MH:
d(M,(α) )= MH = .