Đáp án B
Phương pháp: Xét M(x0;y0;z0), (α): Ax+By+Cz+D = 0
Khoảng cách từ M đến (α) là:
Cách giải: Khoảng cách từ A đến (α) là:
Đáp án B
Phương pháp: Xét M(x0;y0;z0), (α): Ax+By+Cz+D = 0
Khoảng cách từ M đến (α) là:
Cách giải: Khoảng cách từ A đến (α) là:
Trong không gian Oxyz, cho mặt phẳng ( α ) : 2 x + y - 2 z - 2 = 0 , đường thẳng d : x + 1 1 = y + 2 2 = z + 3 2 và điểm A(1/2; 1; 1). Gọi ∆ là đường thẳng nằm trong mặt phẳng ( α ) , song song với d đồng thời cách d một khoảng bằng 3. Đường thẳng ∆ cắt mặt phẳng Oxy tại điểm B. Độ dài đoạn thẳng AB bằng
A. 7 / 3
B. 7 / 2
C. 21 / 2
D. 3 / 2
Trong không gian Oxyz, cho hai điểm A(-3;0;1), B(1;-1;3) và mặt phẳng (P):x - 2y + 2z - 5 = 0. Đường thẳng (d) đi qua A, song song với mặt phẳng (P) sao cho khoảng cách từ N đến đường thẳng d nhỏ nhất, Đường thẳng (d) có một VTCP là u → = ( 1 ; b ; c ) khi đó b c bằng
A. b c = 11
B. b c = - 11 2
C. b c = - 3 2
D. b c = 3 2
Trong không gian Oxyz, cho hai điểm A - 3 ; 0 ; 1 , B 1 ; - 1 ; 3 và mặt phẳng P : x - 2 y + 2 z - 5 = 0 . Viết phương trình chính tắc của đường thẳng d đi qua A, song song với mặt phẳng (P) sao cho khoảng cách từ B đến d nhỏ nhất.
A. d : x + 3 26 = y 11 = z - 1 - 2
B. d : x + 3 16 = y 5 = z - 1 - 3
C. d : x + 3 - 20 = y - 6 = z - 1 4
D. d : x + 3 - 10 = y - 3 = z - 1 2
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x - 5 2 = y + 7 2 = z - 12 - 1 và mặt phẳng α : x + 2 y - 3 z - 3 = 0 . Gọi M là giao điểm của d với α , A thuộc d sao cho A M = 14 . Tính khoảng cách từ A đến mặt phẳng α
A. 2
B. 3.
C. 6
D. 14
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (α):2x-2y-z+3=0 và điểm M(1;-2;13). Tính khoảng cách từ điểm M đến mặt phẳng ( α ) .
A. d(M, ( α ) )= 4/3
B. d(M, ( α ) )= 2/3
C. d(M, ( α ) )= 5/3
D. d(M, ( α ) )= 4
Trong không gian Oxyz, cho mặt phẳng α : 2 x + y - 2 z - 2 = 0 , đường thẳng d : x + 1 2 = y + 2 2 = z + 3 2 và điểm A 1 2 ; 1 ; 1 . Gọi ∆ là đường thẳng nằm trong mặt phẳng α , song song với d đồng thời cách d một khoảng bằng 3. Đường thẳng ∆ cắt mặt phẳng (Oxy) tại điểm B. Độ dài đoạn thẳng AB bằng
A. 7 2
B. 21 2
C. 7 3
D. 3 2
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (α): 2x+y-2z-2 = 0 và đường thẳng có phương trình d : x + a 1 = y + 2 2 = z + 3 2 và điểm A(1/2;1;1) Gọi ∆ là đường thẳng nằm trong mặt phẳng (α) , song song với d, đồng thời cách d một khoảng bằng 3. Đường thẳng ∆ cắt mặt phẳng (Oxy) tại điểm B. Độ dài đoạn thẳng AB bằng:
A. 7/3
B. 7/2
C. 21 2
D. 3/2
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P : 2 x − y + 2 z + 2 = 0 và điểm A(1;-2;0). Mặt phẳng α song song với (P) và cách A một khoảng bằng 2 có dạng 2 x + a y + b z + c = 0 . Khi đó, tổng a + b + c bằng bao nhiêu?
A. -1
B. -10
C. -9
D. 3
Trong không gian với hệ trục tọa độ Oxyz cho hai điểm A − 3 ; 0 ; 1 ; B 1 ; − 1 ; 3 và mặt phẳng P : x − 2 y + 2 z − 5 = 0. Viết phương trình chính tắc của đường thẳng d đi qua A, song song với mặt phẳng (P) sao cho khoảng cách từ B đến d nhỏ nhất.
A. d : x + 3 26 = y 11 = z − 1 − 2
B. d : x + 3 26 = y − 11 = z − 1 2
C. d : x + 3 26 = y 11 = z − 1 2
D. d : x + 3 − 26 = y 11 = z − 1 − 2