Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x - 5 2 = y + 7 2 = z - 12 - 1 và mặt phẳng α : x + 2 y - 3 z - 3 = 0 . Gọi M là giao điểm của d với α , A thuộc d sao cho A M = 14 . Tính khoảng cách từ A đến mặt phẳng α
A. 2
B. 3.
C. 6
D. 14
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d: x - 2 1 = y - 2 2 = z + 2 - 1 và mặt phẳng ( α ) :2x+2y-z-4=0. Tam giác ABC có A(-1;2;1), các đỉnh B, C nằm trên (α) và trọng tâm G nằm trên đường thẳng d. Tọa độ trung điểm M của BC là
A. M(2;1;2)
B. M(0;1;-2)
C. M(1;-1;-4)
D. M(2;-1;-2)
Cho điểm M(1 ; 4 ; 2) và mặt phẳng (α): x + y + z -1 = 0.
a) Tìm tọa độ điểm H là hình chiếu vuông góc của điểm M trên mặt phẳng (α) ;
b) Tìm tọa độ điểm M' đối xứng với M qua mặt phẳng (α).
c) Tính khoảng cách từ điểm M đến mặt phẳng (α).
Cho điểm M(1 ; 4 ; 2) và mặt phẳng (α): x + y + z -1 = 0.
a) Tìm tọa độ điểm H là hình chiếu vuông góc của điểm M trên mặt phẳng (α) ;
b) Tìm tọa độ điểm M' đối xứng với M qua mặt phẳng (α).
c) Tính khoảng cách từ điểm M đến mặt phẳng (α).
Trong không gian với hệ tọa độ Oxyz, cho điểm M(1;2;3) và mặt phẳng α : x - 2 y + z - 12 = 0 . Tìm tọa độ điểm H là hình chiếu vuông góc của điểm M trên mặt phẳng α
A. H(5;-6;7)
B. H(2;0;4)
C. H(3;-2;5)
D. H(-1;6;1)
Trong không gian với hệ tọa độ Oxyz cho điểm M(1;4;2) và mặt phẳng ( α ) : x + y + z - 1 = 0 . Tọa độ điểm M’ đối xứng với điểm M qua mặt phẳng (α) là
A. M’(0;-2;-3)
B. M’(-3;-2;0)
C. M’(-2;0;-3)
D. M’(-3;0;-2)
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A - 2 ; 1 ; 0 , B 4 ; 4 ; - 3 , C 2 ; 3 ; - 2 và đường thẳng d : x - 1 1 = y - 1 - 2 = z - 1 - 1 . Gọi α là mặt phẳng chứa d sao cho A, B, C ở cùng phía đối với mặt phẳng α . Gọi d 1 , d 2 , d 3 lần lượt là khoảng cách từ A, B, C đến α . Tìm giá trị lớn nhất của T = d 1 + 2 d 2 + 3 d 3 .
A. T m a x = 2 21
B. T m a x = 6 14
C. T m a x = 14 + 203 3 + 3 21
D. T m a x = 203
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (α): 2x+y-2z-2 = 0 và đường thẳng có phương trình d : x + a 1 = y + 2 2 = z + 3 2 và điểm A(1/2;1;1) Gọi ∆ là đường thẳng nằm trong mặt phẳng (α) , song song với d, đồng thời cách d một khoảng bằng 3. Đường thẳng ∆ cắt mặt phẳng (Oxy) tại điểm B. Độ dài đoạn thẳng AB bằng:
A. 7/3
B. 7/2
C. 21 2
D. 3/2
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng α : 2 x + y − 2 z − 2 = 0 và đường thẳng có phương trình d : x + 1 1 = y + 2 2 = z + 3 2 và điểm A 1 2 ; 1 ; 1 . Gọi ∆ là đường thẳng nằm trong mặt phẳng α , song song với d, đồng thời cách d một khoảng bằng 3. Đường thẳng ∆ cắt mặt phẳng (Oxy) tại điểm B. Độ dài đoạn thẳng AB bằng:
A. 7 3 .
B. 7 2 .
C. 21 2 .
D. 3 2 .