Cho hàm số y = x 2 - 2 x + 4 có đồ thị (C). Phương trình tiếp tuyến của (C) tại điểm có hoành độ x = 0 là
A. y = 4x + 3
B. y = 1 2 x + 2
C. y = - 1 2 x + 2
D. y = - 1 2 x - 2
Cho hàm số y = x 2 - 2 x + 4 có đồ thị (C). Phương trình tiếp tuyến của (C) tại điểm có hoành độ x = 0 là
A. y = 4x + 3
B. y = 1 2 x + 2
C. y = - 1 2 x + 2
D. y = - 1 2 x - 2
cho đường cong (C) là đồ thị của Hàm Số y = 2x^3 - 2x^2 - 4x + 1. viết phương trình tiếp tuyến của đường cong C tại điểm có hoành độ x=0
\(y'=6x^2-4x-4\)
\(y'\left(0\right)=-4\)
\(y\left(0\right)=1\)
Do đó pt tiếp tuyến tại điểm có hoành độ x=0 là:
\(y=-4\left(x-0\right)+1\Leftrightarrow y=-4x+1\)
Cho hàm số y=x lnx có đồ thị (C). Phương trình tiếp tuyến của đồ thị hàm số tại giao điểm của đồ thị với đường thẳng d:x-1=0 là
A.x-y+1=0
B.x+y-1=0
C.x-y=0
D.x-y-1=0
Cho hàm số y=\(2x^4-4x^2-1\) có đồ thị là (C). Viết phương trình tiếp tuyến của (C), biết
a) tiếp tuyến vuông góc với đường thẳng \(x-48y+1=0\)
b) tiếp tuyến đi qua \(A\left(1;-3\right)\)
c) tiếp tuyến tiếp xúc voi (C) tại 2 điểm phân biệt
\(y'=8x^3-8x\)
a. Đường thẳng \(x-48y+1=0\) có hệ số góc \(\dfrac{1}{48}\) nên tiếp tuyến có hệ số góc \(k=-48\)
\(\Rightarrow8x^3-8x=-48\Rightarrow x^3-x+6=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2-2x+3\right)=0\Rightarrow x=-2\)
\(y'\left(-2\right)=47\)
Phương trình tiếp tuyến: \(y=-48\left(x+2\right)+47\)
b. Gọi tiếp điểm có hoành độ \(x_0\)
Phương trình tiếp tuyến: \(y=\left(8x_0^3-8x_0\right)\left(x-x_0\right)+2x^4_0-4x^2_0-1\) (1)
Do tiếp tuyến qua A:
\(\Rightarrow-3=\left(8x_0^3-8x_0\right)\left(1-x_0\right)+2x_0^4-4x^2_0-1\)
\(\Leftrightarrow3x_0^4-4x_0^3-2x_0^2+4x_0-1=0\)
\(\Leftrightarrow\left(x_0-1\right)^2\left(3x_0^2+2x_0-1\right)=0\Rightarrow\left[{}\begin{matrix}x_0=1\\x_0=-1\\x_0=\dfrac{1}{3}\end{matrix}\right.\)
Có 3 tiếp tuyến thỏa mãn. Thay lần lượt các giá trị \(x_0\) bên trên vào (1) là được
Cho hàm số y = x + 2 x + 1 có đồ thị (C). Phương trình tiếp tuyến của đồ thị hàm số tại giao điểm của đồ thị (C) với trục tung là
A. y = x – 2
B. y = –x + 2
C. y = –x + 1
D. y = –x –2
1)Viết phương trình tiếp tuyến của đường cong (C):y=f(x)=x^3-2x biết: a)tiếp tuyến vuông góc với trục Ox. b)Tại giao điểm của (C) với các trục tọa độ.
2)Cho hàm số :y=f(x)=x-1/x có đồ thị là đường cong (C):
a) Viết pt tt với (C),biết tt song song với dt y=2x và tiếp điểm có hoành độ âm.
b)CMR trên (C) không thể tồn tại 2 điểm M,N để tiếp tuyến tại 2 điểm này vuông góc với nhau.
c)CMR mọi tiếp tuyến của (C) đều không thể đi qua gốc tọa độ O.
3)Tìm tất cả các điểm trên đồ thị (C):y=f(x)=(2x+3)/(x+2) sao cho tại điểm đó tt của (C) cắt các đường thằng (d1):x=-2 và (d2):y=2 lần lượt tại A và B sao cho AB gần nhất.
4)Cho hàm số y=f(x)=sin2x+1 (x>=0) và =2x+1 (x<0) .Tính đạo hàm của hàm số tại Xo=0 bằng định nghĩa.
Cho hàm số y = 1 3 x 3 + x 2 − 2 , có đồ thị (C). Phương trình tiếp tuyến của (C) tại điểm có hoành độ là nghiệm của phương trình y ' ' x = 0 là:
A. y = − x − 7 3
B. y = x − 7 3
C. y = − x + 7 3
D. y = 7 3 x
Đáp án là A.
y ' = x 2 + 2 x ⇒ y ' ' = 2 x + 2 = 0 ⇔ x = − 1 ⇒ y ' − 1 = − 1
Phương trình tiếp tuyến của (C) tại − 1 ; − 4 3 là:
y = − 1 x + 1 − 4 3 = − x − 7 3 .
Cho hàm số \(y=\dfrac{1}{2}x^4-x^2+m\)(m là tham số ) có đồ thị (Cm), đường tròn (S)có phương trình \(x^2+y^2+2x+6y+1=0\) và điểm A(-1;-6).Tìm m để tồn tại tiếp tuyến với đồ thị (Cm) cắt đường tròn (S) tại hai điểm phân biệt B,C sao cho tam giác ABC có chu vi đạt giá trị lớn nhất
Đường tròn (S) tâm \(I\left(-1;-3\right)\) bán kính \(R=3\)
Thế tọa độ A vào pt (S) thỏa mãn nên A nằm trên đường tròn
Ta cần tìm B, C sao cho chi vi ABC lớn nhất
Đặt \(\left(AB;AC;BC\right)=\left(c;b;a\right)\Rightarrow\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}=2R\)
\(\Rightarrow a+b+c=2R\left(sinA+sinB+sinC\right)\)
Mặt khác ta có BĐT quen thuộc \(sinA+sinB+sinC\le\dfrac{3\sqrt{3}}{2}\)
Dấu "=" xảy ra khi tam giác ABC đều
\(\Rightarrow a=b=c=2R.sin60^0=3\sqrt{3}\)
Khi đó I đồng thời là trọng tâm kiêm trực tâm \(\Rightarrow\left\{{}\begin{matrix}BC\perp AI\\d\left(A;BC\right)=\dfrac{a\sqrt{3}}{2}=\dfrac{9}{2}\end{matrix}\right.\)
\(\Rightarrow\) Phương trình BC có dạng \(y=-\dfrac{3}{2}\)
Hay (Cm) có 1 tiếp tuyến là \(y=-\dfrac{3}{2}\) (hệ số góc bằng 0 nên tiếp tuyến này đi qua 2 cực tiểu)
\(\Rightarrow m=-1\)
Cho hàm số y = x - 2 x + 1 . Viết phương trình tiếp tuyến của đồ thị hàm số trên tại điểm có hoành độ x 0 = 0
A. y = 3 x - 2
B. y = - 3 x - 2
C. y = 3 x - 3
D. y = 3 x + 2
Cho hàm số y = f(x) =(ax+b)/(cx+d)(a,b,c,d ϵ R;c ≠ 0;d ≠ 0) có đồ thị (C). Đồ thị của hàm số y = f’(x) như hình vẽ dưới đây. Biết (C) cắt trục tung tại điểm có tung độ bằng 2. Tiếp tuyến của (C) tại giao điểm của (C) và trục hoành có phương trình là
A. x – 3y +2 = 0
B. x + 3y +2 = 0
C. x – 3y - 2 = 0
D. x + 3y -2 = 0