Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 12 2019 lúc 7:03

Đáp án D

Phương pháp giải:

Dùng định lí Thalet, định lý Menelaus và phương pháp tỉ số thể tích để tính thể tích khối chóp theo tham số k.

Khảo sát hàm số chứa biến k để tìm giá trị lớn nhất – giá trị nhỏ nhất

Lời giải:

Gọi O là tâm của hình bình hành ABCD và  I = S O ∩ A M .

Ba điểm M,A,I thẳng hàng nên áp dụng định lý Menelaus cho tam giác SOC ta có:  S M M C . C A A O . O I I S = 1 ⇒ O I S I = 1 = k 2 .

camcon
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 1 2024 lúc 16:09

Bài này ứng dụng 1 phần cách giải của bài này:

 

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Giả sử mp (a) cắt SA; SB;SC; SD thứ tự tại A' B' C' D'. Tính \(\dfra... - Hoc24

 

Gọi O' là giao điểm của SO và MP, tương tự như bài trên, ta có 3 đường thẳng SO, MP, NQ đồng quy tại O'

Đồng thời sử dụng diện tích tam giác, ta cũng chứng minh được:

\(3=\dfrac{SA}{SM}+\dfrac{SC}{SP}=\dfrac{2SO}{SO'}=\dfrac{SB}{SN}+\dfrac{SD}{SQ}\)

Áp dụng BĐT Cô-si: \(3=\dfrac{SB}{SN}+\dfrac{SD}{SQ}\ge2\sqrt{\dfrac{SB.SD}{SN.SQ}}\Rightarrow SN.SQ\ge\dfrac{4}{9}.SB.SD\)

Theo bổ đề về diện tích tam giác chứng minh ở đầu:

\(\dfrac{S_{SNQ}}{S_{SBD}}=\dfrac{SN.SQ}{SB.SD}\ge\dfrac{\dfrac{4}{9}SB.SD}{SB.SD}=\dfrac{4}{9}\)

\(\Rightarrow S_{SBD}\ge\dfrac{4}{9}.S_{SBD}=\dfrac{4}{9}.\dfrac{a^2\sqrt{3}}{4}=\dfrac{a^2\sqrt{3}}{9}\)

Nguyễn Việt Lâm
7 tháng 1 2024 lúc 16:10

loading...

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 2 2017 lúc 5:17

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) (P) // BC nên (P) sẽ cắt (SBC) theo giao tuyến B'C' song song với BC.

Tương tự, (P) cắt (SAD) theo giao tuyến MN song song với AD.

Khi M trùng với trung điểm A' của cạnh SA thì thiết diện MB'C'N' là hình bình hành.

b) Với M không trùng với A':

Gọi I ∈ B′M ∩ C′N. Ta có:

I ∈ B′M ⊂ (SAB), tương tự I′ ∈ C′N ⊂ (SCD)

Như vậy I ∈ Δ = (SAB) ∩ (SCD).

Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
25 tháng 5 2017 lúc 10:03

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

Buddy
Xem chi tiết
Hà Quang Minh
22 tháng 9 2023 lúc 12:36

Tham khảo hình vẽ:

a) Ta có:

\(\begin{array}{l}MN = \left( \alpha  \right) \cap \left( {ABC{\rm{D}}} \right)\\C{\rm{D}} = \left( {SC{\rm{D}}} \right) \cap \left( {ABC{\rm{D}}} \right)\\PQ = \left( \alpha  \right) \cap \left( {SC{\rm{D}}} \right)\\MN\parallel C{\rm{D}}\end{array}\)

Do đó theo định lí 2 về giao tuyến của ba mặt phẳng ta có: \(MN\parallel C{\rm{D}}\parallel PQ\).

\( \Rightarrow MNPQ\) là hình bình hành.

b) Ta có:

\(\begin{array}{l}\left. \begin{array}{l}I \in MQ \Rightarrow I \in \left( {SA{\rm{D}}} \right)\\I \in NP \Rightarrow I \in \left( {SBC} \right)\end{array} \right\} \Rightarrow I \in \left( {SA{\rm{D}}} \right) \cap \left( {SBC} \right)\\ \Rightarrow SI = \left( {SA{\rm{D}}} \right) \cap \left( {SBC} \right)\\A{\rm{D}} = \left( {SA{\rm{D}}} \right) \cap \left( {ABC{\rm{D}}} \right)\\BC = \left( {SBC} \right) \cap \left( {ABC{\rm{D}}} \right)\\BC\parallel A{\rm{D}}\end{array}\)

Do đó theo định lí 2 về giao tuyến của ba mặt phẳng ta có: \(A{\rm{D}}\parallel BC\parallel SI\).

Vậy \(I\) luôn luôn thuộc đường thẳng \(d\) đi qua \(S\) song song với \(AD\) và \(BC\) cố định khi \(M\) di động trên \(AD\).

Bap xoai
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 1 2017 lúc 9:04

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 12 2017 lúc 3:54

Chọn A

Xét một trường hợp đặc biệt của các điểm M, E, F ta tính được T = 1.

Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
25 tháng 5 2017 lúc 9:16

Hai mặt phẳng (MAB) và (SCD) có điểm chung M và lần lượt chứa hai đường thẳng song song AB và CD nên giao tuyến của chúng là đường thẳng d' đi qua M và song song với AB và CD. Vậy qua M ta sẽ vẽ đường thẳng d', đường thửng này cắt SC tại N. Đây là điểm cần tìm. Ta thấy ngay ABNM là hình thang. Để ABNM là hình bình hành, ta phải có thêm AM song song với BN. Khi đó AM và BN phải song song với d. Điều này không thể xảy ra khi M thuộc đoạn SD và không trùng với hai đầu mút S và D