Chứng tỏ rằng với a và b là các số bất kì thì: a 2 + b 2 - 2 a b ≥ 0
chứng tỏ rằng với a và b là các số bất kì thì: a2 +b2 -2ab lớn hơn hoặc bằng 0
Trả lời
a^2 + b^2 - 2ab
= ( a^2 - 2ab + b^2 )
= ( a - b )^2 ≥ 0 ( luôn đúng )
Vậy...
\(a^2+b^2-2ab=\left(a-b\right)^2\ge\forall a,b\)
Hằng đẳng thức số 2 \(a^2-2ab+b^2=\left(a-b\right)^2\)
\(\Rightarrow\left(a-b\right)^2\ge0\)
Vậy \(a^2+b^2-2ab\ge0\left(đpcm\right)\)
Chứng tỏ rằng với a và b là các số bất kì thì: a 2 + b 2 / 2 ≥ a b
Ta có: a - b 2 ≥ 0 ⇒ a 2 + b 2 - 2 a b ≥ 0
⇒ a 2 + b 2 - 2 a b + 2 a b ≥ 2 a b ⇒ a 2 + b 2 ≥ 2 a b
⇒ a 2 + b 2 . 1 / 2 ≥ 2 a b . 1 / 2 ⇒ a 2 + b 2 / 2 ≥ a b
Chứng tỏ rằng với a và b là các số bất kì thì :
a) \(a^2+b^2-2ab\ge0\)
b) \(\dfrac{a^2+b^2}{2}\ge ab\)
cho hai số A= 12n +1 , B= 30n+2 ( n là một số tự nhiên bất kì) chứng tỏ rằng A và B là hai số nguyên tố cùng nhau
Lời giải:
Gọi $d=ƯCLN(12n+1, 30n+2)$
$\Rightarrow 12n+1\vdots d; 30n+2\vdots d$
$\Rightarrow 5(12n+1)-2(30n+2)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
$\Rightarrow ƯCLN(12n+1, 30n+2)=1$
$\Rightarrow 12n+1, 30n+2$ là hai số nguyên tố cùng nhau.
Cho a, b là 2 số bất kì , chứng tỏ rằng \(\frac{a^2+b^2}{2}\ge ab\)
\(\frac{a^2+b^2}{2}\ge ab\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)
Luôn đúng với mọi a và b
Ta có:
\(\left(a-b\right)^2\ge0\)
<=>\(\left(a-b\right)\cdot\left(a-b\right)\ge0\)
<=>\(\left(a^2-2ab+b^2\right)\ge0\)
<=>\(\left(a^2+b^2\right)\ge2ab\)
<=>\(\frac{a^2+b^2}{2}\ge ab\)(đpcm)
Vậy với 2 số a,b bất kì ta có \(\frac{a^2+b^2}{2}\ge ab\)
Áp dụng bđt AM-GM
\(\frac{a^2+b^2}{2}\ge\frac{2\sqrt{a^2b^2}}{2}=\frac{2ab}{2}=ab\)
Dấu "=" xảy ra \(\Leftrightarrow a=b\)
1. Cho a > 0 , b > 0 và a > b , chứng tỏ rằng : 1/a < 1/b
2. Cho a,b là hai số bất kì , chứng tỏ rằng : ( a + b )2/2 ≥ 2ab
3. Cho a,b là hai số bất kì , chứng tỏ rằng : a2 + b2/2 ≥ ab
2.
\(\dfrac{\left(a+b\right)^2}{2}\ge2ab\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) ( đúng )
Tương tự.......................
1. Xét hiệu : \(\dfrac{1}{a}-\dfrac{1}{b}=\dfrac{b-a}{ab}\)
Lại có: b - a < 0 ( a > b)
ab >0 ( a>0, b > 0)
\(\Rightarrow\dfrac{b-a}{ab}< 0\)
Vậy: \(\dfrac{1}{a}< \dfrac{1}{b}\)
2. Xét hiệu : \(\dfrac{\left(a+b\right)^2}{2}-2ab=\dfrac{a^2+2ab+b^2-4ab}{2}=\dfrac{\left(a-b\right)^2}{2}\ge0\)
Vậy : \(\dfrac{\left(a+b\right)^2}{2}\ge2ab\) Xảy ra đẳng thức khi a = b
3. Xét hiệu : \(\dfrac{a^2+b^2}{2}-ab=\dfrac{a^2+b^2-2ab}{2}=\dfrac{\left(a-b\right)^2}{2}\ge0\)
Vậy : \(\dfrac{a^2+b^2}{2}\ge ab\) Xảy ra đẳng thức khi a = b
Cho a,b,c là các số thực dương bất kì. Chứng tỏ rằng:
\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\sqrt{a^2+b^2-ab}+\sqrt{b^2+c^2-bc}+\sqrt{c^2+a^2-ca}\)
Ta thấy: \(\frac{a^2}{b}-2a+b=\frac{\left(a-b\right)^2}{b}\)
\(\sqrt{a^2-ab+b^2}-\frac{a+b}{2}=\frac{a^2-ab+b^2-\frac{\left(a+b\right)^2}{b}}{\sqrt{a^2-ab+b^2}+\frac{a+b}{2}}=\frac{3\left(a-b\right)^2}{4\sqrt{a^2-ab+b^2}+2a+2b}\)
Bất đẳng thức tương đương với:
\(\frac{\left(a-b\right)^2}{b}+\frac{\left(b-c\right)^2}{c}+\frac{\left(c-a\right)^2}{c}\ge\)
\(\frac{3\left(a-b\right)^2}{4\sqrt{a^2+b^2-2ab}+2\left(a+b\right)}+\frac{3\left(b-c\right)^2}{4\sqrt{b^2+c^2-bc}+2\left(b+c\right)}+\frac{3\left(c-a\right)^2}{b\sqrt{c^2+a^2-ca}+2\left(c+a\right)}\)
\(\Leftrightarrow\left(a-b\right)^2\left[\frac{1}{b}-\frac{3}{4\sqrt{a^2+b^2-2ab}+2\left(a+b\right)}\right]+\left(b-c\right)^2\left[\frac{1}{c}-\frac{3}{4\sqrt{b^2+c^2-2bc}+2\left(b+c\right)}\right]\)
\(+\left(c-a\right)^2\left[\frac{1}{c}-\frac{3}{4\sqrt{c^2+a^2-ca}+2\left(c+a\right)}\right]\ge0\)
Ta đặt:
\(A=\frac{1}{b}-\frac{3}{4\sqrt{a^2+b^2-2ab}+2\left(a+b\right)}\)
\(B=\frac{1}{c}-\frac{3}{4\sqrt{b^2+c^2-2bc}+2\left(b+c\right)}\)
\(C=\frac{1}{c}-\frac{3}{4\sqrt{c^2+a^2-ca}+2\left(c+a\right)}\)
Chứng mình sẽ hoàn tất nếu ta chứng minh được A,B,C\(\ge0\), vậy:
\(A=\frac{1}{b}-\frac{3}{4\sqrt{a^2+b^2-2ab}+2\left(a+b\right)}=\frac{4\sqrt{a^2+b^2-2ab}+2a+b}{4\sqrt{a^2+b^2-2ab}+2\left(a+b\right)}\ge0\)
\(B=\frac{1}{c}-\frac{3}{4\sqrt{b^2+c^2-2bc}+2\left(b+c\right)}=\frac{4\sqrt{b^2+c^2-2bc}+2b+c}{4\sqrt{b^2+c^2-2bc}+2\left(b+c\right)}\ge0\)
\(C=\frac{1}{c}-\frac{3}{4\sqrt{c^2+a^2-ca}+2\left(c+a\right)}=\frac{4\sqrt{c^2+a^2-ca}+2c+a}{4\sqrt{c^2+a^2-ca}+2\left(c+a\right)}\ge0\)
Vậy biểu thức đã được chứng mình.
1) a) Cho a, b, thuộc Z và b khác 0. Chứng tỏ rằng: a / -b = -a / b ; -a / -b = a/b
b) So sánh các số hữu tỉ sau : -2 / 5 và 9 / -20 ; 10 / 7 và -40 / -28
2) Cho số hữu tỉ a / b với b > 0. Chứng tỏ rằng :
a) Nếu a / b > 1 thì a > b và ngược lại nếu a > b thì a / b > 1
b) Nếu a / b < 1 thì a < b và ngược lại nếu a < b thì a / b < 1
3) a) Cho 2 số hữu tỉ a / b và c / d với b > 0, d > 0. Chứng tỏ rằng nếu a / b < c / d thì: a / b < a + c / b + d < c / d
b) Viết 4 số hữu tỉ xen giữa 2 số hữu tỉ -1 / 2 và -1 / 3
1) a) Cho a, b, thuộc Z và b khác 0. Chứng tỏ rằng: a / -b = -a / b ; -a / -b = a/b
b) So sánh các số hữu tỉ sau : -2 / 5 và 9 / -20 ; 10 / 7 và -40 / -28
2) Cho số hữu tỉ a / b với b > 0. Chứng tỏ rằng :
a) Nếu a / b > 1 thì a > b và ngược lại nếu a > b thì a / b > 1
b) Nếu a / b < 1 thì a < b và ngược lại nếu a < b thì a / b < 1
3) a) Cho 2 số hữu tỉ a / b và c / d với b > 0, d > 0. Chứng tỏ rằng nếu a / b < c / d thì: a / b < a + c / b + d < c / d
b) Viết 4 số hữu tỉ xen giữa 2 số hữu tỉ -1 / 2 và -1 / 3