phân tích đa thức thành nhân tử
a)x^3-x^2-4
b)3x^3-7x^2+17x-5
Bài 1:phân tích đa thức thành nhân tử
a,\(x^3-10x^2+21x\)
b,\(3x^3-7x^2-20x\)
a) x3-10x2+21x
= x3-7x2-3x2+21x
= x2(x-7)-3x(x-7)
= (x2-3x)(x-7)
b) 3x3-7x2-20x
= x(3x2-7x-20)
= x(3x2+5x-12x-20)
= x[x(3x+5)-4(3x+5)]
= x(x-4)(3x+5)
Phân tích đa thức thành nhân tử dạng đoán nghiệm
a,-3x^4+20x^3-35x^2-10x+48
b,-2x^4-7x^3-x^2+7x+3
x^5-5x^4-2x^3+17x^2-13x+2
a: Ta có: \(-3x^4+20x^3-35x^2-10x+48\)
\(=-\left(3x^4-20x^3+35x^2+10x-48\right)\)
\(=-\left(3x^4-9x^3-11x^3+33x^2+2x^2-6x+16x-48\right)\)
\(=-\left(x-3\right)\left(3x^3-11x^2+2x+16\right)\)
\(=-\left(x-3\right)\left(3x^3-6x^2-5x^2+10x-8x+16\right)\)
\(=-\left(x-3\right)\left(x-2\right)\left(3x^2-5x-8\right)\)
\(=-\left(x-3\right)\left(x-2\right)\left(3x-8\right)\left(x+1\right)\)
b: Ta có: \(-\left(2x^4+7x^3+x^2-7x-3\right)\)
\(=-\left(2x^4-2x^3+9x^3-9x^2+10x^2-10x+3x-3\right)\)
\(=-\left(x-1\right)\left(2x^3+9x^2+10x+3\right)\)
\(=-\left(x-1\right)\left(2x^3+2x^2+7x^2+7x+3x+3\right)\)
\(=-\left(x-1\right)\left(x+1\right)\left(2x^2+7x+3\right)\)
\(=-\left(x-1\right)\left(x+1\right)\cdot\left(x+3\right)\left(2x+1\right)\)
Phân tích đa thức thành nhân tử
a/ 4x 2 - 8x + 4
b/ x 2 – y 2 + 3x + 3y
\(a,=4\left(x-1\right)^2\\ b,=\left(x-y\right)\left(x+y\right)+3\left(x+y\right)=\left(x+y\right)\left(x-y+3\right)\)
a, 4x2 - 8x + 4 = (2x)2 - 2.2x.2 + 2 = (2x - 2)2
b, x2 - y2 + 3x + 3y = (x2 - y2) + (3x + 3y) = (x- y). (x + y) + 3.(x + y) = (x+y).(x- y + 3)
Phân tích đa thức thành nhân tử
a) 16a^2-4b^3
b) 3x^3 +45
a, 16a2 - 4b3 = 4.(4a2 - b3)
b, 3x3 + 45 = 3.(x3 + 15)
a) \(16a^2-4b^3\)
\(=4\left(4a^2-b^2\right)\)
b) \(3x^3+45\)
\(=3\left(x^3+15\right)\)
phân tích đa thức thành nhân tử
a) \(P=x^2-5x+6\)
b) \(P=3x^2+14x-5\)
c) \(P=-2x^2-7x-5\)
a: \(P=x^2-5x+6\)
\(=x^2-2x-3x+6\)
\(=x\left(x-2\right)-3\left(x-2\right)\)
\(=\left(x-2\right)\left(x-3\right)\)
b: \(P=3x^2+14x-5\)
\(=3x^2+15x-x-5\)
\(=3x\left(x+5\right)-\left(x+5\right)\)
\(=\left(x+5\right)\left(3x-1\right)\)
c: \(P=-2x^2-7x-5\)
\(=-\left(2x^2+7x+5\right)\)
\(=-\left(2x^2+2x+5x+5\right)\)
\(=-\left[2x\left(x+1\right)+5\left(x+1\right)\right]\)
\(=-\left(x+1\right)\left(2x+5\right)\)
Phân tích đa thức thành nhân tử
a, 7x\(^5\)-14\(x^3\)y +21x\(^2\)y
b, 4x\(^2\)-20x+25
a. 7x5 - 14x3y + 21x2y
= 7x2(x3 - 2xy + 3y)
b. 4x2 - 20x + 25
= (2x)2 - 2x.2.5 + 52
= (2x - 5)2
a) \(7x^5-14x^3y+21x^2y\)
\(=7x^2\left(x^3-2xy+3y\right)\)
b) \(4x^2-20x+25\)
\(=\left(2x\right)^2-2.2x.5+5^2\)
\(\left(2x-5\right)^2\)
phân tích đa thức thành nhân tử
3x^3 - 7x^2 +17x -5
3x3-7x2+17x-5
=3x3-x2-6x2+2x+15x-5
= x2.(3x-1)-2x.(3x-1)+5.(3x-1)
= (3x-1)(x2-2x+5)
Ta có : \(3x^3-7x^2+17x-5\)
\(=\left(3x^3-x^2\right)-\left(6x^2-2x\right)+\left(15x-5\right)\)
\(=x^2\left(3x-1\right)-2x\left(3x-1\right)+5\left(3x-1\right)\)
\(=\left(3x-1\right)\left(x^2-2x+5\right)\)
bái 3 phân tích các đa thức sau thành nhân tử
a; x mũ 3-x mũ 2 -4xmũ 2+8x-4
b;4x mũ 2-25-(x mũ 2-5 ).(2x+7)
Bài 1: Phân tích đa thức thành nhân tử
a) (6x+3)-(2x-5)(2x+1)
b) (3x-2)(4x-3)-(2-3x)(x-1)-2(3x-2)(x+1)
Bài 2*:Phân tích đa thức thành nhân tử
a) (a-b)(a+2b)-(b-a)(2a-b)-(a-b)(a+3b)
b) 5xy3-2xy2-15y2+6z
c) (x+y)(2x-y)+(2x-y)(3x-y)-(y-2x)
d) ab3c2-a2b2c2+ab2c3-a2bc
e) x2(y-z)+y2(z-x)+z2(x-y)
f) x2-6xy+9y2+4x-12y
Bài 1:
a: Ta có: \(\left(6x+3\right)-\left(2x-5\right)\left(2x+1\right)\)
\(=\left(2x+1\right)\left(3-2x+5\right)\)
\(=\left(2x+1\right)\left(8-2x\right)\)
\(=2\left(4-x\right)\left(2x+1\right)\)
b) Ta có: \(\left(3x-2\right)\left(4x-3\right)-\left(2-3x\right)\left(x-1\right)-2\left(3x-2\right)\left(x+1\right)\)
\(=\left(3x-2\right)\left(4x-3\right)+\left(3x-2\right)\left(x-1\right)-\left(3x-2\right)\left(2x+2\right)\)
\(=\left(3x-2\right)\left(4x-3+x-1-2x-2\right)\)
\(=\left(3x-2\right)\left(3x-6\right)\)
\(=3\left(3x-2\right)\left(x-2\right)\)
Bài 2:
a: Ta có: \(\left(a-b\right)\left(a+2b\right)-\left(b-a\right)\left(2a-b\right)-\left(a-b\right)\left(a+3b\right)\)
\(=\left(a-b\right)\left(a+2b\right)+\left(a-b\right)\left(2a-b\right)-\left(a-b\right)\left(a+3b\right)\)
\(=\left(a-b\right)\left(a+2b+2a-b-a-3b\right)\)
\(=\left(a-b\right)\left(2a-4b\right)\)
\(=2\left(a-b\right)\left(a-2b\right)\)
f: Ta có: \(x^2-6xy+9y^2+4x-12y\)
\(=\left(x-3y\right)^2+4\left(x-3y\right)\)
\(=\left(x-3y\right)\left(x-3y+4\right)\)