Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Đăng Vinh
Xem chi tiết
Nguyễn Hoàng Minh
2 tháng 12 2021 lúc 9:46

\(A\left(2;-6\right)\inđths\Leftrightarrow2m-2=-6\Leftrightarrow m=-2\)

illumina
Xem chi tiết
Tô Mì
5 tháng 9 2023 lúc 21:15

1. Đồ thị của hàm số đi qua điểm \(M\left(2;3\right)\) nên giá trị hoành độ và tung độ của \(M\) là nghiệm của phương trình đường thẳng trên, tức:

\(3=m\cdot2+m-6\Leftrightarrow m=3\left(TM\right)\)

 

2. Đồ thị hàm số song song với đường thẳng \(\left(d\right):y=3x+2\), khi: \(\left\{{}\begin{matrix}m=3\\m-6\ne2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\m\ne8\end{matrix}\right.\Rightarrow m=3\left(TM\right)\)

 

3. Gọi \(P\left(x_0;y_0\right)\) là điểm cố định mà đồ thị hàm số đi qua với mọi giá trị \(m\).

Khi đó: \(mx_0+m-6=y_0\Leftrightarrow\left(x_0+1\right)m-\left(y_0+6\right)=0\left(I\right)\)

Suy ra, phương trình \(\left(I\right)\) có vô số nghiệm, điều này xảy ra khi: \(\left\{{}\begin{matrix}x_0+1=0\\y_0+6=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=-1\\y_0=-6\end{matrix}\right.\).

Vậy: Điểm cố định mà đồ thị hàm số luôn đi qua với mọi giá trị \(m\) là \(P\left(-1;-6\right)\).

 

Quoc Tran Anh Le
Xem chi tiết
Kiều Sơn Tùng
12 tháng 9 2023 lúc 23:33

a) Vì đồ thị hàm số đi qua điểm \(M\left( {1; - 2} \right)\)nên ta có:

\( - 2 = a.1 - 4 \Leftrightarrow a =  - 2 + 4 = 2\)

Hàm số cần tìm là \(y = 2x - 4\) có hệ số góc \(a = 2\).

b) Cho \(x = 0 \Rightarrow y =  - 4\) ta được điểm \(A\left( {0; - 4} \right)\) trên trục \(Oy\).

Cho \(y = 0 \Rightarrow x = \dfrac{4}{2} = 2\) ta được điểm \(B\left( {2;0} \right)\) trên \(Ox\).

Đồ thị hàm số là đường thẳng đi qua hai điểm \(A\) và \(B\).

títtt
Xem chi tiết

a: \(\lim\limits_{x\rightarrow+\infty}\dfrac{\left(m-5\right)x-1}{2x+1}=\lim\limits_{x\rightarrow+\infty}\dfrac{\left(m-5\right)-\dfrac{1}{x}}{2+\dfrac{1}{x}}=\dfrac{m-5}{2}\)

\(\lim\limits_{x\rightarrow-\infty}\dfrac{\left(m-5\right)x-1}{2x+1}=\lim\limits_{x\rightarrow-\infty}\dfrac{m-5-\dfrac{1}{x}}{2+\dfrac{1}{x}}=\dfrac{m-5}{2}\)

=>Đường thẳng \(y=\dfrac{m-5}{2}\) là tiệm cận ngang của đồ thị hàm số \(y=\dfrac{\left(m-5\right)x-1}{2x+1}\)

Để đường tiệm cận ngang \(y=\dfrac{m-5}{2}\) đi qua M(-2;1) thì \(\dfrac{m-5}{2}=1\)

=>m-5=2

=>m=7

b: \(\lim\limits_{x\rightarrow+\infty}\dfrac{\left(2m-1\right)x^2+x-1}{x^2+1}\)

\(=\lim\limits_{x\rightarrow+\infty}\dfrac{\left(2m-1\right)+\dfrac{1}{x}-\dfrac{1}{x^2}}{1+\dfrac{1}{x^2}}=2m-1\)

\(\lim\limits_{x\rightarrow-\infty}\dfrac{\left(2m-1\right)x^2+x-1}{x^2+1}\)

\(=\lim\limits_{x\rightarrow-\infty}\dfrac{\left(2m-1\right)+\dfrac{1}{x}-\dfrac{1}{x^2}}{1+\dfrac{1}{x^2}}=2m-1\)

=>\(y=2m-1\) là đường tiệm cận ngang của đồ thị hàm số \(y=\dfrac{\left(2m-1\right)x^2+x-1}{x^2+1}\)

=>2m-1=1

=>2m=2

=>m=1

Thảo Uyên 9/11
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 10 2021 lúc 19:01

a: Thay x=1 và y=0 vào (d), ta được:

1-2m+3=0

\(\Leftrightarrow m=2\)

Nguyễn ngọc bảo châu
3 tháng 11 2021 lúc 17:46

m=2

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 10 2018 lúc 18:31

Đáp án A

Vì đồ thị hàm số cắt trục hoành tại tại điểm có hoành độ là 2 nên điểm A(2; 0) thuộc đồ thị hàm số đã cho.

Thay x = 2; y = 0 ta được: 0 = (m -2).2 + 8

⇔ 0 = 2m - 4 + 8 ⇔ 0 = 2m + 4 ⇔ m = -2

Mai Quỳnh Anh
Xem chi tiết
Incursion_03
28 tháng 11 2018 lúc 9:12

a, Vì \(-6< 0\)nên hàm số (1) là hàm nghịch biến

Vì \(A\left(-1;6\right)\in\left(1\right)\)

\(\Rightarrow6=\left(-6\right).\left(-1\right)+m-1\)

\(\Leftrightarrow6=6+m-1\)

\(\Leftrightarrow m=1\)

b, Đths (1) cắt đths 2 tại 1 điểm trên trục tung nên 

\(\hept{\begin{cases}m-1\ne3m-11\\x=0\\-6x+m-1=\left(m-1\right)x+3m-11\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}m-1\ne3m-11\\m-1=3m-11\end{cases}}\)ko tìm đc m

Yuuki
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 12 2018 lúc 10:48

Đáp án A

Để đồ thị hàm số y = (2m + 1)x + n trùng với đường thẳng y = 3x - 2 thì:

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

títtt
Xem chi tiết

a: \(\lim\limits_{x\rightarrow+\infty}\dfrac{\left(2m+3\right)x-5}{x+1}\)

\(=\lim\limits_{x\rightarrow+\infty}\dfrac{2m+3-\dfrac{5}{x}}{1+\dfrac{1}{x}}=2m+3\)

\(\lim\limits_{x\rightarrow-\infty}\dfrac{\left(2m+3\right)x-5}{x+1}=\lim\limits_{x\rightarrow-\infty}\dfrac{2m+3-\dfrac{5}{x}}{1+\dfrac{1}{x}}=2m+3\)

=>Đường thẳng y=2m+3 là đường tiệm  cận ngang duy nhất của đồ thị hàm số \(y=\dfrac{\left(2m+3\right)x-5}{x+1}\)

Để đường thẳng y=2m+3 đi qua A(-1;3) thì 2m+3=3

=>2m=0

=>m=0

b: \(\lim\limits_{x\rightarrow+\infty}\dfrac{\left(m^2-3m\right)x^2-1}{x^2+1}\)

\(=\lim\limits_{x\rightarrow+\infty}\dfrac{m^2-3m-\dfrac{1}{x^2}}{1+\dfrac{1}{x^2}}=m^2-3m\)

\(\lim\limits_{x\rightarrow-\infty}\dfrac{\left(m^2-3m\right)x^2-1}{x^2+1}=\lim\limits_{x\rightarrow-\infty}\dfrac{m^2-3m-\dfrac{1}{x^2}}{1+\dfrac{1}{x^2}}=m^2-3m\)

=>Đường thẳng \(y=m^2-3m\) là tiệm cận ngang của đồ thị hàm số \(y=\dfrac{\left(m^2-3m\right)x^2-1}{x^2+1}\)

=>\(m^2-3m=-2\)

=>\(m^2-3m+2=0\)

=>(m-1)(m-2)=0

=>m=1 hoặc m=2

Khánh
13 tháng 7 lúc 9:48

Đúng