Cho số thực a ≥ ln 2 . Tính giới hạn L = lim x → ln 2 ∫ a ln 10 e x e x - 2 3
A. L = ln6
B. L = ln2
C. L = 6
D. L = 2
a) Sử dụng giới hạn \(\mathop {\lim }\limits_{t \to 0} \frac{{\ln \left( {1 + t} \right)}}{t} = 1\) và đẳng thức \(\ln \left( {x + h} \right) - \ln x = \ln \left( {\frac{{x + h}}{x}} \right) = \ln \left( {1 + \frac{h}{x}} \right),\) tính đạo hàm của hàm số \(y = \ln x\) tại điểm x > 0 bằng định nghĩa.
b) Sử dụng đẳng thức \({\log _a}x = \frac{{\ln x}}{{\ln a}}\,\,\left( {0 < a \ne 1} \right),\) hãy tính đạo hàm của hàm số \(y = {\log _a}x.\)
a) Với x > 0 bất kì và \(h = x - {x_0}\) ta có
\(\begin{array}{l}f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {{x_0} + h} \right) - f\left( {{x_0}} \right)}}{h} = \mathop {\lim }\limits_{h \to 0} \frac{{\ln \left( {{x_0} + h} \right) - \ln {x_0}}}{h}\\ = \mathop {\lim }\limits_{h \to 0} \frac{{\ln \left( {1 + \frac{h}{{{x_0}}}} \right)}}{{\frac{h}{{{x_0}}}.{x_0}}} = \mathop {\lim }\limits_{h \to 0} \frac{1}{{{x_0}}}.\mathop {\lim }\limits_{h \to 0} \frac{{\ln \left( {1 + \frac{h}{{{x_0}}}} \right)}}{{\frac{h}{{{x_0}}}}} = \frac{1}{{{x_0}}}\end{array}\)
Vậy hàm số \(y = \ln x\) có đạo hàm là hàm số \(y' = \frac{1}{x}\)
b) Ta có \({\log _a}x = \frac{{\ln x}}{{\ln a}}\) nên \(\left( {{{\log }_a}x} \right)' = \left( {\frac{{\ln x}}{{\ln a}}} \right)' = \frac{1}{{x\ln a}}\)
Tính giới hạn hàm số:
\(\lim\limits_{x\rightarrow1^+}=\ln\left(x\right)\ln\left(x-1\right)\)
a) Sử dụng phép đổi biến \(t = \frac{1}{x},\) tìm giới hạn \(\mathop {\lim }\limits_{x \to 0} {\left( {1 + x} \right)^{\frac{1}{x}}}.\)
b) Với \(y = {\left( {1 + x} \right)^{\frac{1}{x}}},\) tính ln y và tìm giới hạn của \(\mathop {\lim }\limits_{x \to 0} \ln y.\)
c) Đặt \(t = {e^x} - 1.\) Tính x theo t và tìm giới hạn \(\mathop {\lim }\limits_{x \to 0} \frac{{{e^x} - 1}}{x}.\)
a) Ta có \(t = \frac{1}{x},\) nên khi x tiến đến 0 thì t tiến đến dương vô cùng do đó
\(\mathop {\lim }\limits_{x \to 0} {\left( {1 + x} \right)^{\frac{1}{x}}} = \mathop {\lim }\limits_{t \to + \infty } {\left( {1 + \frac{1}{t}} \right)^t} = e\)
b) \(\ln y = \ln {\left( {1 + x} \right)^{\frac{1}{x}}} = \frac{1}{x}\ln \left( {1 + x} \right)\)
\(\mathop {\lim }\limits_{x \to 0} \ln y = \mathop {\lim }\limits_{x \to 0} \frac{{\ln \left( {1 + x} \right)}}{x} = 1\)
c) \(t = {e^x} - 1 \Leftrightarrow {e^x} = t + 1 \Leftrightarrow x = \ln \left( {t + 1} \right)\)
\(\mathop {\lim }\limits_{x \to 0} \frac{{{e^x} - 1}}{x} = \mathop {\lim }\limits_{t \to 0} \frac{t}{{\ln \left( {t + 1} \right)}} = 1\)
Tính giới hạn hàm số :
\(\lim\limits_{x\rightarrow e}\frac{\ln x-1}{x-e}\)
Đặt \(t=x-e\Rightarrow\begin{cases}x=t+e\\x\rightarrow e;t\rightarrow0\end{cases}\)
\(\Rightarrow L=\lim\limits_{t\rightarrow0}\frac{\ln\left(t+e\right)-\ln e}{t}=\lim\limits_{t\rightarrow0}\frac{\ln\left(\frac{t+e}{e}\right)}{t}=\lim\limits_{t\rightarrow0}\left[\frac{\ln\left(1+\frac{t}{e}\right)}{\frac{t}{e}}\right]=\frac{1}{e}\)
Tính giới hạn hàm số :
\(\lim\limits_{x\rightarrow0}\frac{\ln\left(1+x^3\right)}{2x}\)
\(L=\lim\limits_{x\rightarrow0}\frac{\ln\left(1+x^3\right)}{2x}=\lim\limits_{x\rightarrow0}\frac{\ln\left(1+x^3\right)}{x^3.\frac{2}{x^2}}=\lim\limits_{x\rightarrow0}\left[\frac{\ln\left(1+x^3\right)}{x^3}.\frac{x^3}{2}\right]=1.0=0\)
Tính giới hạn hàm số :
\(\lim\limits_{x\rightarrow0}\frac{\ln\left(1+2x\right)}{\tan x}\)
\(L=\lim\limits_{x\rightarrow0}\frac{\ln x-1}{\tan x}=\lim\limits_{x\rightarrow0}\frac{\ln\left(1+2x\right)}{\frac{\sin x}{\cos x}}=\lim\limits_{x\rightarrow0}\frac{\ln\left(1+2x\right)}{2x.\frac{\sin x}{x}.\frac{1}{2\cos x}}\)
\(=\lim\limits_{x\rightarrow0}\left[\frac{\ln\left(1+2x\right)}{2x}.\frac{1}{\frac{\sin x}{x}}.2\cos x\right]=1.\frac{1}{1}.2.1=2\)
Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x ln x , trục Ox và đường thẳng x=e
A. S = e 2 + 3 4
B. S = e 2 - 1 2
C. S = e 2 + 1 2
D. S = e 2 + 1 4
Tính diện tích giới hạn bởi các đừơng cong y = (x - 1)ln(x + 1) và trục hoành
A. 3 – 2ln2
B. - 3 4 + 2 ln 2
C. - 5 4 + 2 ln 2
D. 4 + ln2
Chọn C.
Phương trình hoành độ giao điểm của đồ thị hàm số và trục hoành là:
(x – 1) ln(x + 1) = 0 <=> x = 1 hoặc x = 0
→ Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = (x – 1) ln(x = 1) và trục hoành là
Đặt u = ln ( x + 1 ) d v = ( 1 - x ) d x ⇒ d u = 1 x + 1 d x v = 2 x - x 2 2
= 1 2 ln 2 - 5 4 + 3 2 ln 2 = - 5 4 + 2 ln 2
Cho biết \(\mathop {\lim }\limits_{x \to 0} \frac{{{e^x} - 1}}{x} = 1\) và \(\mathop {\lim }\limits_{x \to 0} \frac{{\ln \left( {1 + x} \right)}}{x} = 1\). Dùng định nghĩa tính đạo hàm của các hàm số:
a) \(y = {e^x}\);
b) \(y = \ln x\).
a) Với bất kì \({x_0} \in \mathbb{R}\), ta có:
\(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{{e^x} - {e^{{x_0}}}}}{{x - {x_0}}}\)
Đặt \(x = {x_0} + \Delta x\). Ta có:
\(\begin{array}{l}f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{{e^{{x_0} + \Delta x}} - {e^{{x_0}}}}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{{e^{{x_0}}}.{e^{\Delta x}} - {e^{{x_0}}}}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{{e^{{x_0}}}.\left( {{e^{\Delta x}} - 1} \right)}}{{\Delta x}}\\ & = \mathop {\lim }\limits_{\Delta x \to 0} {e^{{x_0}}}.\mathop {\lim }\limits_{\Delta x \to 0} \frac{{{e^{\Delta x}} - 1}}{{\Delta x}} = {e^{{x_0}}}.1 = {e^{{x_0}}}\end{array}\)
Vậy \({\left( {{e^x}} \right)^\prime } = {e^x}\) trên \(\mathbb{R}\).
b) Với bất kì \({x_0} > 0\), ta có:
\(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\ln {\rm{x}} - \ln {{\rm{x}}_0}}}{{x - {x_0}}}\)
Đặt \(x = {x_0} + \Delta x\). Ta có:
\(\begin{array}{l}f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\ln \left( {{x_0} + \Delta x} \right) - \ln {{\rm{x}}_0}}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\ln \left( {\frac{{{x_0} + \Delta x}}{{{{\rm{x}}_0}}}} \right)}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\ln \left( {1 + \frac{{\Delta x}}{{{{\rm{x}}_0}}}} \right)}}{{\Delta x}}\\ = \mathop {\lim }\limits_{\Delta x \to 0} \frac{1}{{{x_0}}}.\frac{{\ln \left( {1 + \frac{{\Delta x}}{{{{\rm{x}}_0}}}} \right)}}{{\frac{{\Delta x}}{{{x_0}}}}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{1}{{{x_0}}}.\mathop {\lim }\limits_{\Delta x \to 0} \frac{{\ln \left( {1 + \frac{{\Delta x}}{{{{\rm{x}}_0}}}} \right)}}{{\frac{{\Delta x}}{{{x_0}}}}}\end{array}\)
Đặt \(\frac{{\Delta x}}{{{x_0}}} = t\). Lại có: \(\mathop {\lim }\limits_{\Delta x \to 0} \frac{1}{{{x_0}}} = \frac{1}{{{x_0}}};\mathop {\lim }\limits_{\Delta x \to 0} \frac{{\ln \left( {1 + \frac{{\Delta x}}{{{{\rm{x}}_0}}}} \right)}}{{\frac{{\Delta x}}{{{x_0}}}}} = \mathop {\lim }\limits_{t \to 0} \frac{{\ln \left( {1 + t} \right)}}{t} = 1\)
Vậy \(f'\left( {{x_0}} \right) = \frac{1}{{{x_0}}}.1 = \frac{1}{{{x_0}}}\)
Vậy \({\left( {\ln x} \right)^\prime } = \frac{1}{x}\) trên khoảng \(\left( {0; + \infty } \right)\).
Sử dụng kết quả \(\mathop {\lim }\limits_{x \to 0} \frac{{\ln (1 + x)}}{x} = 1\), tính đạo hàm của hàm số \(y = \ln x\) tại điểm x dương bất kì bằng định nghĩa
\(\begin{array}{l}f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f(x) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\ln x - \ln {x_0}}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\ln \frac{x}{{{x_0}}}}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\frac{{\ln \frac{x}{{{x_0}}}}}{{\ln e}}}}{{x - {x_0}}} = \frac{1}{{\ln e}}.\mathop {\lim }\limits_{x \to {x_0}} \frac{{\ln \frac{x}{{{x_0}}}}}{{x - {x_0}}}\\ = \frac{1}{{\ln e}}\mathop {\lim }\limits_{x \to {x_0}} \frac{{\ln \left( {1 + \frac{x}{{{x_0}}} - 1} \right)}}{{x - {x_0}}} = \frac{1}{{\ln e}}\mathop {\lim }\limits_{x \to {x_0}} \frac{{\frac{x}{{{x_0}}} - 1}}{{x - {x_0}}} = \frac{1}{{\ln e}}.\mathop {\lim }\limits_{u \to 0} \frac{{\frac{{x - {x_0}}}{{{x_0}}}}}{{x - {x_0}}} = \frac{1}{{{x_0}\ln e}}\\ \Rightarrow \left( {\ln x} \right)' = \frac{1}{{x\ln e}} = \frac{1}{x}\end{array}\)