Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 10 2019 lúc 13:32

Phép đối xứng qua mặt phẳng (BDD’B’) biến lăng trụ ABD.A’B’D’ thành BCD.B’C’D’

⇒ hai lăng trụ ABD.A’B’D’ và BCD.B’C’D’ bằng nhau.

Sách Giáo Khoa
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 5 2022 lúc 11:10

Tham khảo:

Xét 2 tứ diện A’ABD và CC’D’B’

Dùng phép đối xứng qua tâm O của hình hộp

Ta có:

A’ đối xứng C qua O

A đối xứng C’ qua O

B đối xứng D’ qua O

D đối xứng B’ qua O

Suy ra tứ diện A’ABD bằng tứ diện CC’D’B’.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 11 2018 lúc 12:43

Giải bài tập Đại số 11 | Để học tốt Toán 11

a) + A’D’ // BC và A’D’ = BC

⇒ A’D’CB là hình bình hành

⇒ A’B // D’C, mà D’C ⊂ (B’D’C) ⇒ A’B // (B’D’C) (1)

+ BB’ // DD’ và BB’ = DD’

⇒ BDD’B’ là hình bình hành

⇒ BD // B’D’, mà B’D’ ⊂ (B’D’C) ⇒ BD // (B’D’C) (2)

A’B ⊂ (BDA’) và BD ⊂ (BDA’); A’B ∩ BD = B (3)

Từ (1), (2), (3) suy ra : (BDA’) // (B’D’C).

b) Gọi O = AC ∩ BD

+ Ta có: O ∈ AC ⊂ (AA’C’C)

⇒ A’O ⊂ (AA’C’C).

Trong (AA’C’C), gọi A’O ∩ AC’ = G1.

G1 ∈ A’O ⊂ (A’BD)

⇒ G1 ∈ AC’ ∩ (BDA’).

+ Trong hình bình hành AA’C’C gọi I = A’C ∩ AC’

⇒ A’I = IC.

⇒ AI là trung tuyến của ΔA’AC

⇒   G 1   =   A ’ O   ∩   A C ’ là giao của hai trung tuyến AI và A’O của ΔA’AC

⇒   G 1  là trọng tâm ΔA’AC

⇒   A ’ G 1   =   2 . A ’ O / 3

⇒   G 1  cũng là trọng tâm ΔA’BD.

Vậy AC' đi qua trọng tâm G 1  của ΔA’BD.

Chứng minh tương tự đối với điểm G 2 .

c) *Vì G 1  là trọng tâm của ΔAA’C nên A G 1 / A I   =   2 / 3 .

Vì I là trung điểm của AC’ nên AI = 1/2.AC’

Từ các kết quả này, ta có : A G 1   =   1 / 3 . A C ’

*Chứng minh tương tự ta có : C ’ G 2   =   1 / 3 . A C ’

Suy ra : A G 1   =   G 1 G 2   =   G 2 C ’   =   1 / 3 . A C ’ .

d) (A’IO) chính là mp (AA’C’C) nên thiết diện cần tìm chính là hình bình hành AA’C’C.

Buddy
Xem chi tiết
Quoc Tran Anh Le
23 tháng 8 2023 lúc 14:18

Ta có: ABCD là hình bình hành suy ra AD // BC suy ra AD // (BCC'B').

ABCD.A'B'C'D' là hình hộp suy ra DD'//CC' suy ra DD' // (BCC'B').

(ADD'A') chứa cặp cạnh cắt nhau song song với (BCC'B') nên (ADD'A') //(BCC'B').

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 2 2017 lúc 5:43

Đáp án A.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 7 2018 lúc 16:08

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 2 2019 lúc 13:55

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 6 2018 lúc 15:21

Buddy
Xem chi tiết
Quoc Tran Anh Le
22 tháng 9 2023 lúc 20:03

+) Vì hình hộp ABCD.A'B'C'D' có các cạnh bằng nhau nên tứ giác A'B'C'D' ADD'A' CC'D'D là hình thoi.

+) AB' // C'D và C'D \( \bot \) CD' nên AB' \( \bot \)CD'

+) AC // A'C' và A'C' \( \bot \) B'D' nên AC \( \bot \) B'D'

+) B'C // A'D và A'D \( \bot \) AD' nên B'C \( \bot \) AD'

Vậy ta đã chứng minh được rằng tứ diện ACB'D' có các cặp cạnh đối diện vuông góc với nhau.