Cho hình hộp ABCD.A’B’C’D’. Chứng minh rằng hai tứ diện A’ABD và CC’D’B’ bằng nhau.
Cho hình hộp ABCD.A’B’C’D’. Chứng minh rằng hai lăng trụ ABD.A’B’D’ và BCD.B’C’D’ bằng nhau
Phép đối xứng qua mặt phẳng (BDD’B’) biến lăng trụ ABD.A’B’D’ thành BCD.B’C’D’
⇒ hai lăng trụ ABD.A’B’D’ và BCD.B’C’D’ bằng nhau.
Cho hình hộp ABCD.A'B'C'D'. Chứng minh rằng hai tứ diện A'ABD và CC'D'B' bằng nhau ?
Tham khảo:
Xét 2 tứ diện A’ABD và CC’D’B’
Dùng phép đối xứng qua tâm O của hình hộp
Ta có:
A’ đối xứng C qua O
A đối xứng C’ qua O
B đối xứng D’ qua O
D đối xứng B’ qua O
Suy ra tứ diện A’ABD bằng tứ diện CC’D’B’.
Cho hình hộp ABCD.A’B’C’D’.
a) Chứng minh rằng hai mặt phẳng (BDA’) và (B’D’C) song song với nhau.
b) Chứng minh rằng đường chéo AC’ đi qua trọng tâm G1 và G2 lần lượt của hai tam giác BDA’ và B’D’C.
c) Chứng minh G1 và G2 chia đoạn AC’ thành ba phần bằng nhau.
d) Gọi O và I lần lượt là tâm các hình bình hành ABCD và AA’C’C. Xác định thiết diện của mặt phẳng (A’IO) với hình hộp đã cho.
a) + A’D’ // BC và A’D’ = BC
⇒ A’D’CB là hình bình hành
⇒ A’B // D’C, mà D’C ⊂ (B’D’C) ⇒ A’B // (B’D’C) (1)
+ BB’ // DD’ và BB’ = DD’
⇒ BDD’B’ là hình bình hành
⇒ BD // B’D’, mà B’D’ ⊂ (B’D’C) ⇒ BD // (B’D’C) (2)
A’B ⊂ (BDA’) và BD ⊂ (BDA’); A’B ∩ BD = B (3)
Từ (1), (2), (3) suy ra : (BDA’) // (B’D’C).
b) Gọi O = AC ∩ BD
+ Ta có: O ∈ AC ⊂ (AA’C’C)
⇒ A’O ⊂ (AA’C’C).
Trong (AA’C’C), gọi A’O ∩ AC’ = G1.
G1 ∈ A’O ⊂ (A’BD)
⇒ G1 ∈ AC’ ∩ (BDA’).
+ Trong hình bình hành AA’C’C gọi I = A’C ∩ AC’
⇒ A’I = IC.
⇒ AI là trung tuyến của ΔA’AC
⇒ G 1 = A ’ O ∩ A C ’ là giao của hai trung tuyến AI và A’O của ΔA’AC
⇒ G 1 là trọng tâm ΔA’AC
⇒ A ’ G 1 = 2 . A ’ O / 3
⇒ G 1 cũng là trọng tâm ΔA’BD.
Vậy AC' đi qua trọng tâm G 1 của ΔA’BD.
Chứng minh tương tự đối với điểm G 2 .
c) *Vì G 1 là trọng tâm của ΔAA’C nên A G 1 / A I = 2 / 3 .
Vì I là trung điểm của AC’ nên AI = 1/2.AC’
Từ các kết quả này, ta có : A G 1 = 1 / 3 . A C ’
*Chứng minh tương tự ta có : C ’ G 2 = 1 / 3 . A C ’
Suy ra : A G 1 = G 1 G 2 = G 2 C ’ = 1 / 3 . A C ’ .
d) (A’IO) chính là mp (AA’C’C) nên thiết diện cần tìm chính là hình bình hành AA’C’C.
Cho hình hộp ABCD.A’B’C’D. Chứng minh rằng hai mặt phẳng (ADD’A’) và (BCC’B’) song song với nhau.
Ta có: ABCD là hình bình hành suy ra AD // BC suy ra AD // (BCC'B').
ABCD.A'B'C'D' là hình hộp suy ra DD'//CC' suy ra DD' // (BCC'B').
(ADD'A') chứa cặp cạnh cắt nhau song song với (BCC'B') nên (ADD'A') //(BCC'B').
Gọi V là thể tích hình lập phương ABCD.A’B’C’D’, là thể tích của tứ diện A’ABD. Hệ thức nào sau đây là đúng?
A. V= 6 V 1
B. V = 4 V 1
C. V = 3 V 1
D. V = 2 V 1
Gọi V là thể tích của hình lập phương ABCD.A’B’C’D’, V 1 là thể tích tứ diện A’ABD. Hệ thức nào sau đây đúng?
A. V = 3 V 1
B. V = 4 V 1
C. V = 6 V 1
D. V = 2 V 1
Gọi V là thể tích của hình lập phương ABCD.A’B’C’D’, V 1 là thể tích tứ diện A’ABD. Hệ thức nào sau đây đúng?
Gọi V là thể tích hình lập phương ABCD.A’B’C’D’, V 1 là thể tích của tứ diện A’ABD. Hệ thức nào sau đây là đúng
A. V= 6 V 1
B. V= 4 V 1
C. V= 3 V 1
D. V= 2 V 1
Cho hình hộp ABCD.A'B'C'D' có các cạnh bằng nhau. Chứng minh rằng tứ diện ACB'D' có các cặp cạnh đối diện vuông góc với nhau.
+) Vì hình hộp ABCD.A'B'C'D' có các cạnh bằng nhau nên tứ giác A'B'C'D' ADD'A' CC'D'D là hình thoi.
+) AB' // C'D và C'D \( \bot \) CD' nên AB' \( \bot \)CD'
+) AC // A'C' và A'C' \( \bot \) B'D' nên AC \( \bot \) B'D'
+) B'C // A'D và A'D \( \bot \) AD' nên B'C \( \bot \) AD'
Vậy ta đã chứng minh được rằng tứ diện ACB'D' có các cặp cạnh đối diện vuông góc với nhau.