Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Sách Giáo Khoa
Xem chi tiết
Anh Triêt
30 tháng 3 2017 lúc 15:24

Áp dụng định lí về đường trung tuyến:

OA2 = - (1)

Thay OA = , AB = a, AD = BC = b và BD = m vào (1) ta có:
\(\left(\dfrac{n}{2}\right)^2=\dfrac{b^2+a^2}{2}-\dfrac{m^2}{4}\)
\(\Leftrightarrow\dfrac{n^2}{4}+\dfrac{m^2}{4}=\dfrac{a^2+b^2}{2}\)
\(\Leftrightarrow m^2+n^2=2\left(a^2+b^2\right)\)

A B C D a b n m

 

Nguyễn Gia Bảo
Xem chi tiết
Trieu Nguyen
Xem chi tiết
Trương Huy Hoàng
21 tháng 1 2022 lúc 22:24

Gọi giao điểm của AC và BD là O

Ta có: \(OB^2=\dfrac{2\left(AB^2+BC^2\right)-AC^2}{4}\)

\(\Leftrightarrow\) \(4OB^2+AC^2=2\left(AB^2+BC^2\right)\)

\(\Leftrightarrow\) \(BD^2+AC^2=2\left(AB^2+BC^2\right)\) (Do \(4OB^2=\left(2OB\right)^2\) mà 2OB = BD)

\(\Leftrightarrow\) \(m^2+n^2=2\left(a^2+b^2\right)\) (đpcm)

Chúc bn học tốt!

Lại Thị Hồng Liên
Xem chi tiết
Phạm Thảo Vân
13 tháng 4 2016 lúc 10:01

Áp dụng định lí về đường trung tuyến:

OA – 

Thay OA =  , AB = a

AD = BC = b và BD = m => dpcm

Oanh Lê Kim
Xem chi tiết
Tô Mì
28 tháng 8 2021 lúc 10:39

- Gọi E là giao điểm của AC và BD

△ABE có trung tuyến BE

\(\Rightarrow BE^2=\dfrac{2\left(AB^2+BC^2\right)-AC^2}{4}\)

\(\Rightarrow4.BE^2=2\left(AB^2+BC^2\right)-AC^2\)

Mà O là trung điểm BD \(\Rightarrow BD=2.BE\Rightarrow BD^2=4.BE^2\)

\(\Rightarrow BD^2=2\left(AB^2+BC^2\right)-AC^2\)

\(\Rightarrow BD^2+AC^2=2\left(AB^2+BC^2\right)\)

Vậy: \(AC^2+BD^2=2\left(a^2+b^2\right)\left(đpcm\right)\)

(Hình như đây là Toán 10?)

Akai Haruma
28 tháng 8 2021 lúc 11:41

Lời giải:
Kẻ đường cao $BH, DT$ của hình bình hành

Dễ chứng minh $\triangle ADT =\triangle BCH$ (ch-gn)

$\Rightarrow DT=CH; AT=BH$

Áp dụng định lý Pitago:

$AC^2+BD^2=AT^2+TC^2+BH^2+DH^2$

$=(AT^2+BH^2)+TC^2+DH^2)$

$=2AT^2+(DC-DT)^2+(DC+CH)^2$

$=2(AD^2-DT^2)+(DC-DT)^2+(DC-DT)^2$

$=2(b^2-DT^2)+(a-DT)^2+(a+DT)^2$

$=2(b^2+a^2)$

Ta có đpcm.

Akai Haruma
28 tháng 8 2021 lúc 11:43

Hình vẽ:

Nguyễn Gia Bảo
Xem chi tiết
Hứa Đạt
Xem chi tiết
Hảo Đỗ Trần Thị
Xem chi tiết
Bùi Thảo
Xem chi tiết
Huỳnh Thị Kim Chung
4 tháng 10 2015 lúc 20:18

(Tự vẽ hình nhen)

a,Ta có ABCD là hbh => gADC=gABC(1)

BM là phân giác gABC(gt)=>gABM=1/2gABC(2)

DN là phân giác gADC(gt)=>gMDN=1/2gADC(3)

Từ(1),(2) và (3)=> gNDM=gNBM

Mặt khác NB//DM(t/c hbh)=> BMDN là hbh

b,Gọi O là giao điểm của AC và BD(4)

=>O là trung điểm của BD(t/c hbh)

Ta lại có BMDN là hbh(câu a)=>O cũng là trung điểm của MN(5)

Từ (4) và (5)=>AC,BD,MN đồng quy tại O