Cho hình bình hành ABCD có AB=2BC. Gọi M và N là Trung điểm của AB, CD. a) chứng minh rằng AMND là hình thoi. b)chứng minh rằng MBND là hình bình hành. C) chứng minh rằng AC, BD, MN đồng quy
5. cho hình bình hành ABCD, có M là trung điểm của AD, N là trung điểm của BC. Chứng minh rằng BM=DN
6. Cho hình bình hành ABCD, gọi E,F lần lượt là trung điểm của AB,CD.
a) Chứng minh rằng: Tứ giác DEBF là hình bình hành
b) DE cắt AC tại G, BF cắt AC tại H. Chứng minh: DE = EF = FB
7. Cho hình bình hành ABCD, kẻ AM vuông góc với BD tại H, kẻ CN vuông góc với BD tại k.
a) chứng minh rằng: tứ giác AMCN là hình bình hành
b) Gọi I là trung điểm của MN. Chứng minh rằng: ba điểm A,I,C thẳng hàng
Cho hình bình hành ABCD, có AB = 2AD. Gọi E, F theo thứtựcủa trung điểm AB, CD. a, Chứng minh rằng: Tứgiác AEFD, EBCF là hình thoi.b, M là giao điểm của AF và DE, N là giao điểm của CE và BE. Tứgiác MENF là hình gì?c, Chứng minh: MN // AB d, Chứng minh rằng: Các đường thẳng sau đồng quy : AC, BD, EF, MN
Câu 4 (3,0 điểm). Cho hình bình hành ABCD có E, F theo thứ tự là trung điểm của AB, CD.
a) Tứ giác DEBF là hình gì? Vì sao?
b) Chứng minh rằng các đường thẳng AC, BD, EF đồng quy tại một điểm.
c) Gọi giao điểm của AC với DE và BF theo thứ tự là M và N. Chứng minh rằng M và N đối xứng nhau qua O.
Bài 4 (3điểm):Cho hình bình hành ABCD. Gọi I,Ktheo thứtựlà trung điểm của CD, AB. Đường chéo BD cắt AI, CK theo thứtựởE, F.
a) Chứng minh rằng: DE = EF = FB.
b) Chứng minh: Tứgiác AECF là hình bình hành.
c) Gọi O là trung điểm của EF. Chứng minh rằng A, O, C thẳng hàng
d) Gọi AI cắt BC tại M, CK cắt AD tại N.Chứng minh rằng: AC, BD, IK, MN đồng quy
Cho tứ giác ABCD, gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. a) Chứng minh rằng MNPQ là hình bình hành b) Gọi I, J lần lượt là trung điểm của AC và BD. Chứng minh rằng các đoạn thẳng MP, QN, IJ đồng quy tại một điểm.
Cho hình bình hành ABCD tâm O. Gọi M, N lần lượt là trung điểm của AB và CD.
a) Chứng minh DN = AM và chứng minh AMND là hình bình hành.
b) Chứng minh MBND là hình bình hành.
c) Chứng minh AN // CM và AN = CM.
d) Chứng minh M, O và N thẳng hàng.
e) Đường chéo BD cắt AN ở I và CM ở Q. Chứng minh BQ = QI = ID.
Bài 4: (3,5 điểm) Cho hình bình hành ABCD (AB > BC) có M, N lần lượt là trung điểm của AB và CD.
a) Chứng minh: AMCN là hình bình hành
b) Chứng minh: AC, BD, MN đồng quy
c) Gọi E là giao của AD và MC. Chứng minh: AM là đường trung bình của ΔECD
Cho hình bình hành ABCD (AB > AD), phân giác góc A cắt cạnh CD tại M, phân giác góc C cắt cạnh AB tại N.
a) Chứng minh tứ giác AMCN là hình bình hành.
b) Gọi E là trung điểm AB, F là trung điểm CD, chứng minh rằng AC, MN, EF và BD đồng quy.
c) Đường chéo DB cắt AF, EC lần lượt tại I, K chứng minh DI = IK = KB.