Chứng minh: 1 x − 1 x + 3 = 3 x ( x + 3 ) . Từ đó, tính nhanh biểu thức: M= 1 x ( x + 3 ) + 1 ( x + 3 ) ( x + 6 ) + . .. + 1 ( x + 12 ) ( x + 15 ) ,
với các mẫu thỏa mãn x ≠ 0 .
a, Cho x + y = 1 và xy = -1. Chứng minh rằng : x^3 + y^3 = 4
b, Cho x - y = 1 và xy = 6. Chứng minh rằng : x^3 - y^3 = 19
a, Ta có : \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=\left(x+y\right)\left(\left(x+y\right)^2-2xy-xy\right)\)
\(=1\left(1^2-3\left(-1\right)\right)=1\left(1^2+3\right)=4\)
b, Ta có : \(x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(=\left(x-y\right)\left(\left(x-y\right)^2+3xy\right)\)
\(=1\left(1+3.9\right)=19\)
Bài 5. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2 =0
Bài 6. Với mọi số thực a, b. Chứng minh rằng: |a| + |b| > |a + b|
Bài 7. Với mọi số thực a, b. Chứng minh rằng: |a| − |b| < |a − b|
Bài 8. Chứng minh rằng: |x − 1| + |x − 2| > 1
Bài 9. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| > 2
Bài 10. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| + |x − 4| > 4
Bài 11. Chứng minh rằng |x − 1| + 2|x − 2| + |x − 3| > 2
Bài 5. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)
2 = 0
Bài 6. Với mọi số thực a, b. Chứng minh rằng: |a| + |b| > |a + b|
Bài 7. Với mọi số thực a, b. Chứng minh rằng: |a| − |b| 6 |a − b|
Bài 8. Chứng minh rằng: |x − 1| + |x − 2| > 1
Bài 9. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| > 2
Bài 10. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| + |x − 4| > 4
Bài 11. Chứng minh rằng |x − 1| + 2|x − 2| + |x − 3| > 2
chứng minh biểu thúc không phụ thuộc vào biến:
a) (x-1)^3 - (x-1)(x^2+x+1)-3(1-x)x
chứng minh giúp mk với được ko
a, Biểu thức = x^3-3x^2+3x-1-(x^3-1)-3.(x-x^2)
=x^3-3x^2+3x-1-x^2+1-3x+3x^2 = 0
=> giá trị của biểu thức trên ko phụ thuộc vào biến
A=1/2+1/2^2+1/2^3+...+1/2^20
Chứng minh A<1
Chứng minh 3/1^2 x 2^2 + 5/2^3 x 3^2 + 7/3^2 x 4^2 + ... + 19/9^2 x 10^2 < 1
chứng minh 1/x^3 + y^3 =(1/x + y)-3y/x * (1/x +y)
Bài 3: Chứng minh bằng hai cách
1, (x-1)(x\(^2\)+x+1)=x\(^3\)-1
2, (x\(^3\)+x\(^2\)y+xy\(^2\)+y\(^3\))(x-y)=x\(^3\)-y\(^3\)
Bài 1 :
Cách 1 : Dùng hằng đẳng thức : \(A^3-B^3=\left(A-B\right)\left(A^2+AB+B^2\right)\)
Áp dụng hằng đẳng thức trên ta suy ra được : đpcm.
Cách 2 :
\(VT=\left(x-1\right)\left(x^2+x+1\right)\)
\(=x^3+x^2+x-x^2-x-1\)
\(=x^3-1\left(VP\right)\)
suy ra : đpcm.
Bài 2 :
Hình như sai đề rồi á bạn . Đáp án đúng phải là \(x^4-y^4\) á cậu.
Cách 1 : Ta biến đổi vế phải thành vế trái .
Ta có : \(VP=x^4-y^4=\left(x^2+y^2\right)\left(x^2-y^2\right)\)
\(=\left(x^2+y^2\right)\left(x-y\right)\left(x+y\right)\)
\(=\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)\left(VT\right)\)
Suy ra : đpcm.
Cách 2 : Bạn cũng có thể dùng hằng đẳng thức hoặc nhân bung vế trái ra á.
chứng minh:
(x-1)3-(x+2)(x2-2x+4)=3(1-x)
\(\left(x-1\right)^3-\left(x+2\right)\left(x^2-2x+4\right)=3\left(1-x\right)\)
\(\Leftrightarrow x^3-3x^2+3x-1-x^3-8=3-3x\)
\(\Leftrightarrow3x^2-6x+12=0\)
\(\Leftrightarrow x^2-2x+4=0\)
\(\Leftrightarrow\left(x-1\right)^2+3=0\left(VLý.do.\left(x-1\right)^2+3\ge3>0\right)\)
Vậy \(S=\varnothing\)
chứng minh đẳng thức
(x^3 -1) (x^3+1) = (x^2-1) (x^2+x+1) (x^2 x +1)
Bạn ơi đề bài sai nha mik sửa lại đề bài
\(\left(x^3-1\right)\left(x^3+1\right)=\left(x^2-1\right)\left(x^2+x+1\right)\)
VT = \(\left(x^3-1\right)\left(x^3+1\right)=\left(x^3\right)^2-1=x^6-1\)
VP = \(\left(x^2-1\right)\left(x^2+x+1\right)=\left(x^2\right)^3-1=x^6-1\)
Ta thấy VT = VP
=> \(\left(x^3-1\right)\left(x^3+1\right)=\left(x^2-1\right)\left(x^2+x+1\right)\) (đpcm)
chứng minh nếu x+y+z=-3 thì: (x+1)^3+(y+1^3)+(z+1)^3=3(x+1)(y+1)(z+1)
Đặt x+1=a,y+1=b,z+1=c
Theo bài ra ta có:
A^3+b^3+c^3=3abc
hay (a+b)^3-3a(b^2-)3(a^2)b+c^3-3abc=0
Hay (a+b)^3+c^3-3ab(a+b+c)=0
Hay (a+b+c)((a+b)^2-(a+b)×c+c^2)-3ab(a+b+c)=0
Hay(a+b+c)(a^2+b^2+c^2-ab-bc-ac)=0(1)
Mà x+y+z=-3 hay (x+1)+(y+1)+(z+1)=0 hay a+b+c=0(2)
Từ (1)(2) suy ra 0×(a^2+b^2+c^2-ab-bc-ac)=0
Vậy (1) đúng. Đề bài được cm