Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lâm Khánh Ly
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 10 2021 lúc 21:59

b: \(S=3^0+3^2+3^4+...+3^{2002}\)

\(=\left(3^0+3^2+3^4\right)+...+3^{1998}\left(3^0+3^2+3^4\right)\)

\(=91\cdot\left(1+...+3^{1998}\right)⋮7\)

secret1234567
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 10 2021 lúc 12:00

b: \(S=\left(3^0+3^2+3^4\right)+...+3^{1998}\left(3^0+3^2+3^4\right)\)

\(=91\cdot\left(1+...+3^{1998}\right)⋮7\)

DUNGKHANH.PRO HE HE
Xem chi tiết
DUNGKHANH.PRO HE HE
7 tháng 1 2021 lúc 20:42

giup minh voi

 

mikusanpai(՞•ﻌ•՞)
7 tháng 1 2021 lúc 20:56

tham khảo

https://olm.vn/hoi-dap/detail/49371559502.html

cái này khó

Tuquynh Tran
Xem chi tiết
Hồng Nhan
17 tháng 10 2021 lúc 16:54

undefined

Nam Dốt Toán
Xem chi tiết
Akai Haruma
29 tháng 1 2023 lúc 21:51

Lời giải:
a.

$S=3^0+3^2+3^4+...+3^{2002}$

$3^2S=3^2+3^4+3^6+...+3^{2004}$

$3^2S-S=(3^2+3^4+3^6+...+3^{2004})-(3^0+3^2+3^4+...+3^{2002})$

$8S=3^{2004}-3^0=3^{2004}-1$

$S=\frac{3^{2004}-1}{8}$
b.

$S=(3^0+3^2+3^4)+(3^6+3^8+3^{10})+....+(3^{1998}+3^{2000}+3^{2002})$

$=(3^0+3^2+3^4)+3^6(3^0+3^2+3^4)+....+3^{1998}(3^0+3^2+3^4)$

$=(3^0+3^2+3^4)(1+3^6+...+3^{1998})$

$=91(1+3^6+...+3^{1998})=7.13(1+3^6+...+3^{1998})\vdots 7$

Ta có đpcm.

jennyfer nguyen
Xem chi tiết
Lê Thị Thanh Hằng
Xem chi tiết
Cô Hoàng Huyền
16 tháng 11 2016 lúc 16:40

Ta có \(S=1+3^2+3^4+...+3^{98}\Rightarrow3^2.S=3^2+3^4+3^6+...+3^{100}\)

\(=\left(S-1\right)+3^{100}\)

\(\Rightarrow9S=S+3^{100}-1\Rightarrow S=\frac{3^{100}-1}{8}.\)

Ta thấy \(S=1+3^2+3^4+...+3^{98}=\left(1+3^{98}\right)+\left(3^2+3^4\right)+...+\left(3^{94}+3^{96}\right)\)

Vì 31 có tận cùng là 3; 32 có tận cùng là 9; 33 có tận cùng là 7, 34 có tận cùng là 1 nên 34k+2 có tận cùng là 9; 34k có tận cùng là 1. Vậy thì 1+398 có tận cùng là 0, tương tự 32 + 34 cũng có tận cùng là 0;...

Tóm lại S có tận cùng là 0 hay S chia hết cho 10. 

Nguyen Vien
Xem chi tiết
neu em con ton tai
Xem chi tiết