Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
14 tháng 12 2017 lúc 15:03

 

 

 

 

títtt
Xem chi tiết
Nguyễn Đức Trí
17 tháng 9 2023 lúc 22:16

1) \(y=\dfrac{2x^2+1}{x^2}\)

\(\Rightarrow y'=\dfrac{\left(4x+1\right)x^2-2x\left(2x^2+1\right)}{x^4}\)

\(\Leftrightarrow y'=\dfrac{4x^3+x^2-4x^3-2x}{x^4}\)

\(\Leftrightarrow y'=\dfrac{x^2-2x}{x^4}=\dfrac{x\left(x-2\right)}{x^4}=\dfrac{x-2}{x^3}\)

2) \(f\left(x\right)=\sqrt[]{-5x^2+14x-9}\)

\(\Rightarrow f'\left(x\right)=\dfrac{-10x+14}{2\sqrt[]{-5x^2+14x-9}}\)

\(\Leftrightarrow f'\left(x\right)=\dfrac{-2\left(5x-7\right)}{2\sqrt[]{-5x^2+14x-9}}\)

\(\Leftrightarrow f'\left(x\right)=\dfrac{-\left(5x-7\right)}{\sqrt[]{-5x^2+14x-9}}\)

Để \(f'\left(x\right)=0\)

\(f'\left(x\right)=\dfrac{-\left(5x-7\right)}{\sqrt[]{-5x^2+14x-9}}=0\)

\(\Leftrightarrow5x-7=0\)

\(\Leftrightarrow5x=7\)

\(\Leftrightarrow x=\dfrac{7}{5}\)

Vậy tập hợp giá trị để \(f'\left(x\right)=0\) là \(\left\{\dfrac{7}{5}\right\}\)

Quoc Tran Anh Le
Xem chi tiết
Kiều Sơn Tùng
24 tháng 9 2023 lúc 22:51

Tham khảo:

a) Ta có: \(f(0) = a{.0^2} + b.0 + c = 1 \Rightarrow c = 1.\)

Lại có:

 \(f(1) = a{.1^2} + b.1 + c = 2 \Rightarrow a + b + 1 = 2\)

\(f(2) = a{.2^2} + b.2 + c = 5 \Rightarrow 4a + 2b + 1 = 5\)

Từ đó ta có hệ phương trình \(\left\{ \begin{array}{l}a + b + 1 = 2\\4a + 2b + 1 = 5\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}a + b = 1\\4a + 2b = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = 0\end{array} \right.\)(thỏa mãn điều kiện \(a \ne 0\))

Vậy hàm số bậc hai đó là \(y = f(x) = {x^2} + 1\)

b) Tập giá trị \(T = \{ {x^2} + 1|x \in \mathbb{R}\} \)

Vì \({x^2} + 1 \ge 1\;\forall x \in \mathbb{R}\) nên \(T = [1; + \infty )\)

Đỉnh S có tọa độ: \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - 0}}{{2.1}} = 0;{y_S} = f(0) = 1\)

Hay \(S\left( {0;1} \right).\)

Vì hàm số bậc hai có \(a = 1 > 0\) nên ta có bảng biến thiên sau:

Hàm số nghịch biến trên khoảng \(\left( { - \infty ;0} \right)\) và đồng biến trên khoảng \(\left( {0; + \infty } \right)\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 10 2018 lúc 10:24

Đáp án D

- Phương pháp: Sử dụng công thức Đề thi Học kì 2 Toán 11 có đáp án (Đề 2) và Đề thi Học kì 2 Toán 11 có đáp án (Đề 2) tính f'(x). Từ đó giải bất phương trình.

- Cách giải:

+ Ta có: Đề thi Học kì 2 Toán 11 có đáp án (Đề 2)

+ Theo đề bài ta có: 2x.f'(x) - f(x) ≥ 0.

   Đề thi Học kì 2 Toán 11 có đáp án (Đề 2)

+ Thử các đáp án:

+ Với Đề thi Học kì 2 Toán 11 có đáp án (Đề 2) thuộc tập nghiệm của BPT.

   ⇒ Loại đáp án A, B và C.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 6 2018 lúc 3:38

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 9 2017 lúc 17:26

Số 2 lớn hơn mọi giá trị khác của hàm số f(x) = sinx với tập xác định D = R nhưng 2 không phải là giá trị lớn nhất của hàm số này (giá trị lớn nhất là 1); vì vậy A sai. Cũng như vậy B sai với f(x) = sinx, D = R, M = 2. Phát biểu C tự mâu thuẫn: vì M = f( x 0 ),  x 0  ∈ D nên hay không xảy ra M > f(x), ∀x ∈ D.

Đáp án: D

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 7 2018 lúc 18:01

Tâm Cao
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 4 2017 lúc 9:19

Hàm số thì đồng biến trên R.

Khi đó ta có 

Vậy

 

Chọn B