Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vladimir Putin
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 10 2023 lúc 21:09

a: Sửa đề: PT x^2-2x-m-1=0

Khi m=2 thì Phương trình sẽ là:

x^2-2x-2-1=0

=>x^2-2x-3=0

=>(x-3)(x+1)=0

=>\(\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)

b:

\(\text{Δ}=\left(-2\right)^2-4\left(-m-1\right)\)

\(=4+4m+4=4m+8\)

Để phương trình có hai nghiệm dương thì

\(\left\{{}\begin{matrix}4m+8>0\\2>0\\-m-1>0\end{matrix}\right.\Leftrightarrow-2< m< -1\)

\(\sqrt{x_1}+\sqrt{x_2}=2\)

=>\(x_1+x_2+2\sqrt{x_1x_2}=4\)

=>\(2+2\sqrt{-m-1}=4\)

=>\(2\sqrt{-m-1}=2\)

=>-m-1=1

=>-m=2

=>m=-2(loại)

Tô Nguyễn Đăng Khoa
Xem chi tiết
Akai Haruma
14 tháng 7 2023 lúc 15:12

Lời giải:
ĐKXĐ: $9x^2+6x+1\geq 0$

$\Leftrightarrow (3x+1)^2\geq 0$

$\Leftrightarrow x\in\mathbb{R}$
--------------------------

$\sqrt{9x^2+6x+1}=2-x$

\(\Rightarrow \left\{\begin{matrix} 2-x\geq 0\\ 9x^2+6x+1=(2-x)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\leq 2\\ 9x^2+6x+1=x^2-4x+4\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\leq 2\\ 8x^2+10x-3=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\leq 2\\ (4x-1)(2x+3)=0\end{matrix}\right.\Leftrightarrow x=\frac{1}{4}\) hoặc $x=\frac{-3}{2}$

Ngọc Ngọc
Xem chi tiết
LÊ LINH
Xem chi tiết
Nguyễn Hoàng Minh
16 tháng 11 2021 lúc 21:18

\(ĐK:x\ge\dfrac{1}{3}\\ PT\Leftrightarrow\sqrt{x+1}=3x-1\\ \Leftrightarrow x+1=9x^2-6x+1\\ \Leftrightarrow9x^2-7x=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=\dfrac{7}{9}\left(tm\right)\end{matrix}\right.\Leftrightarrow x=\dfrac{7}{9}\)

Nguyễn Lê Phước Thịnh
16 tháng 11 2021 lúc 21:18

\(\Leftrightarrow\sqrt{x+1}=3x-1\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{7}{9}\end{matrix}\right.\)

Selena
Xem chi tiết
pourquoi:)
10 tháng 5 2022 lúc 14:45

a, ĐKXĐ : x ≠ 4

b,

\(\Leftrightarrow3x+2=2\left(x-4\right)\)

\(\Leftrightarrow3x+2=2x-8\)

\(\Leftrightarrow x=-10\) (N)

Vậy : ...

2611
10 tháng 5 2022 lúc 14:46

`a)` Ptr xác định `<=>x-4 \ne 0<=>x \ne 4`

`b)[3x+2]/[x-4]=2`         `ĐK: x \ne 4`

`<=>3x+2=2(x-4)`

`<=>3x+2=2x-8`

`<=>3x-2x=-8-2`

`<=>x=-10` (t/m)

Vậy `S={-10}`

Dương Thị Tường VI
Xem chi tiết
Lê Ng Hải Anh
30 tháng 4 2019 lúc 14:16

Phần a dễ bạn tự làm nha!!! :))

b, Ta có: \(\Delta^'=\left[-\left(m+1\right)\right]^2-2m=m^2+2m+1-2m=m^2+1>0\forall m\)

=> PT luôn có 2 nghiệm phân biệt

Theo Vi-ét, ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m\end{cases}}\)

Ta có: \(\sqrt{x_1}+\sqrt{x_2}=\sqrt{2}\)

\(\Leftrightarrow\left(\sqrt{x_1}+\sqrt{x_2}\right)^2=2\)

\(\Leftrightarrow x_1+2\sqrt{x_1x_2}+x_2=2\)

\(\Leftrightarrow x_1+x_2-2+2\sqrt{x_1x_2}=0\)

\(\Leftrightarrow2\left(m+1\right)-2+2\sqrt{2m}=0\)

\(\Leftrightarrow2m+2\sqrt{2m}=0\)

\(\Leftrightarrow m+\sqrt{2m}=0\)

\(\Leftrightarrow\sqrt{m}\left(\sqrt{m}+\sqrt{2}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{m}=0\\\sqrt{m}+\sqrt{2}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}m=0\\\sqrt{m}=-\sqrt{2}\end{cases}}}\)

Vậy: m = 0

=.= hk tốt!!

Lê Hồ Trọng Tín
30 tháng 4 2019 lúc 14:21

a) Khi m=1 thì pt<=>x2-4x+2=0

Có:\(\Delta\)'=(-2)2-2=2>0=>pt có 2 nghiệm là x1=\(2+\sqrt{2}\)và x2=2-\(\sqrt{2}\)

b)Để pt có nghiệm thì \(\Delta\)'=(m+1)2-2\(\ge\)0<=>m\(\ge\)\(\sqrt{2}\)-1

Theo định lý Viète thì:x1+x2=2(m+1)=\(\sqrt{2}\)<=>\(\frac{\sqrt{2}-2}{2}\)

Nguyễn Minh Châu
30 tháng 4 2019 lúc 14:29

b. Vì phương trình bậc 2 có 2 nghiệm x1 và x2 nên 

         \(x^2-2\left(m+1\right)x+2m=\left(x-x1\right)\left(x-x2\right)=0\)

\(\Rightarrow\hept{\begin{cases}x1.x2=2m\\x1+x2=2\left(m+1\right)\\\sqrt{x1}+\sqrt{x2}=\sqrt{2}\end{cases}}\)(*)

Ta có:            \(\left(\sqrt{x1}+\sqrt{x2}\right)^2=2\)

             \(\Leftrightarrow x1+x2+2\sqrt{x1.x2}=2\)

              \(\Rightarrow2m+2-2\sqrt{2m}=2\)(Theo (*))

              \(\Leftrightarrow2m-2\sqrt{2m}=0\)

              \(\Leftrightarrow\sqrt{2m}.\left(\sqrt{2m}-2\right)=0\)

              \(\Leftrightarrow\orbr{\begin{cases}\sqrt{2m}=0\\\sqrt{2m}=2\end{cases}}\)

               \(\Leftrightarrow\orbr{\begin{cases}m=0\\m=2\end{cases}}\)

       

Nguyễn Trúc Phương
Xem chi tiết
nguyễn cẩm ly
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 1 2021 lúc 20:37

1) Thay \(m=\sqrt{3}+1\) vào hệ phương trình, ta được:

\(\left\{{}\begin{matrix}\left(\sqrt{3}+1-1\right)x-2y=1\\3x+\left(\sqrt{3}+1\right)y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{3}x-2y=1\\3x+\left(\sqrt{3}+1\right)y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x-2\sqrt{3}y=\sqrt{3}\\3x+\left(\sqrt{3}+1\right)y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-2\sqrt{3}y-y\left(\sqrt{3}+1\right)=\sqrt{3}-1\\3x-2\sqrt{3}y=\sqrt{3}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-2\sqrt{3}y-\sqrt{3}y-y=\sqrt{3}-1\\3x-2\sqrt{3}y=\sqrt{3}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y\left(-3\sqrt{3}-1\right)=\sqrt{3}-1\\3x-2\sqrt{3}y=\sqrt{3}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-\sqrt{3}+1}{3\sqrt{3}+1}\\3x-2\sqrt{3}\cdot\dfrac{-\sqrt{3}+1}{3\sqrt{3}+1}=\sqrt{3}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-5+2\sqrt{3}}{13}\\3x=\sqrt{3}-\dfrac{12+10\sqrt{3}}{13}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-5+2\sqrt{3}}{13}\\x=\left(\dfrac{13\sqrt{3}-12-10\sqrt{3}}{13}\right)\cdot\dfrac{1}{3}=\dfrac{3\sqrt{3}-12}{13}\cdot\dfrac{1}{3}=\dfrac{\sqrt{3}-4}{13}\end{matrix}\right.\)

Vậy: Khi \(m=\sqrt{3}+1\) thì hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=\dfrac{\sqrt{3}-4}{13}\\y=\dfrac{-5+2\sqrt{3}}{13}\end{matrix}\right.\)

 

Cầm An Na
Xem chi tiết
Phương Thảo
10 tháng 5 2021 lúc 20:30

ĐKXĐ: \(x-2\ne0\)

\(\Leftrightarrow x\ne2\)

Khách vãng lai đã xóa
Cầm An Na
10 tháng 5 2021 lúc 21:01

trả lời câu hỏi này cho mình nhé mình cảm ơn

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
10 tháng 5 2021 lúc 21:01

ĐKXĐ : x ≠ ±2

Khách vãng lai đã xóa