Cho x 0 là giá trị lớn nhất thỏa mãn 4 x 4 – 100 x 2 = 0 . Chọn câu đúng.
A. x 0 < 2
B. x 0 < 0
C. x 0 > 3
D. 1 < x 0 < 5
1; Tập hợp các giá trị của x thoả mãn:/x+3/-5=0
2;giá trị nguyên dương của x thỏa mãn :/x-1/=-[x-1] là?
3;cho 2 số nguyên x;y thỏa mãn :/x/+/y=7,giá trị lớn nhất của x.y là?
4;giá trị lớn nhất của biểu thức : -3-/x+2/ là?
5;GTLN của biểu thức ; 15-[x-2]^2 là ?
giúp mình với . mình đang cần gấp nhé!
1.Số giá trị của x thỏa mãn 3x(|x|-4)(x4-81)=0 là:...
2.Giá trị lớn nhất của biểu thức A=||x|+15|-3 là:...
Cho x,y nguyên thỏa mãn 4 x^2+ 4x+ y^2- 12= 0. Khi đó giá trị lớn nhất P= x^2+ y^2 là Pmax=
4x^2 + 4x + y^2 - 12=0
<=> 4x^2 +4x +1 +y^2 -13=0
<=> (2x +1)^2 x + y^2=13 (1)
Vì x; y là số nguyên => (2x +1)^2 ; y^2 là 1 số chính phương
Mà 13=2^2 +3^2
Từ (1) => (2x + 1)^2=2 ^2 ; y^2=3^2 hoặc (2x +1)^2=3^2 ; y^2=2^2
.............
(Tự làm nốt bằng cách tìm ra x; y cụ thể rồi thay vào)
Tìm các số nguyên x,y thỏa mãn:6xy+4x-9y-7=0
Tìm giá trị nhỏ nhất của A=x^3+y^3+xy với x,y dương thỏa mãn x+y=1
Tìm các số nguyên x,y thỏa mãn 2x^2+1/x^2+y^2/4=4 sao cho xy đạt giá trị lớn nhất
HELP !
a) \(6xy+4x-9y-7=0\)
\(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)
\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)
\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)
Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)
Tự làm típ
\(A=x^3+y^3+xy\)
\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)
\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))
\(A=x^2+y^2\)
Áp dụng bất đẳng thức Bunhiakovxky ta có :
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)
\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)
Hay \(x^3+y^3+xy\ge\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
Cho x , y ≥ 0 thỏa mãn x + y = 4. Tìm giá trị lớn nhất của biểu thức S = x 3 − 1 y 3 − 1
A. max S = 49
B. max S = 1
C. max S = 1 3
D. max S = 8
Đáp án A
Ta có
S = x 3 y 3 − x 3 + y 3 + 1 = x 3 y 3 − x + y − 3 x y x + y + 1 x y 3 + 12 x y − 63 → t = x y f t = t 3 + 12 t − 63 D o x+y ≥ 2 x y ⇒ x y ≤ 4 ⇒ t ≤ 4 ⇒ M ax 0 ≤ t ≤ 4 f t = f 4 = 49
Cho x và y là hai số thực không âm thỏa mãn x + y = 4 . Tìm giá trị nhỏ nhất và giá trị lớn nhất của biểu thức P = \(x^4+y^4-4xy+3\)
\(P=\left(x^2+y^2\right)^2-2x^2y^2-4xy+3=\left[\left(x+y\right)^2-2xy\right]^2-2x^2y^2-4xy+3\)
\(=\left(16-2xy\right)^2-2x^2y^2-4xy+3=2x^2y^2-68xy+259\)
\(4=x+y\ge2\sqrt[]{xy}\Rightarrow0\le xy\le4\)
Đặt \(xy=a\Rightarrow0\le a\le4\)
\(P=2a^2-68a+259=259-2a\left(34-a\right)\le259\)
\(P_{max}=259\) khi \(a=0\) hay \(\left(x;y\right)=\left(4;0\right);\left(0;4\right)\)
\(P=\left(2a^2-68a+240\right)+19=2\left(4-a\right)\left(30-a\right)+19\ge19\)
\(P_{min}=19\) khi \(a=4\) hay \(x=y=2\)
CHo x,y là các số thực thỏa mãn \(^{x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0.}\)0.Tính giá trị lớn nhất của P=xy.
Cho ba số thực x,y,z thỏa mãn x ≥ 0, y ≥ 0, z ≥ 2 và x + y + z = 4 . Tìm giá trị lớn nhất của biểu thức H = xyz
\(4=x+y+z\ge3\sqrt[3]{xyz}\Leftrightarrow\sqrt[3]{xyz}\le\dfrac{4}{3}\Leftrightarrow xyz\le\dfrac{64}{27}\)(BĐT cauchy)
Dấu \("="\Leftrightarrow x=y=z=\dfrac{4}{3}\)
Lời giải:
Áp dụng BĐT AM-GM:
$xy\le \frac{(x+y)^2}{4}=\frac{(4-z)^2}{4}$
$\Rightarrow H\leq \frac{z(4-z)^2}{4}$
Tiếp tục áp dụng BĐT AM-GM:
$z(4-z)\leq \frac{(z+4-z)^2}{4}=4$
$4-z\leq 2$ do $z\geq 2$
$\Rightarrow \frac{z(4-z)^2}{4}\leq \frac{4.2}{4}=2$
Hay $H\leq 2$
Vậy $H_{\max}=2$ khi $(x,y,z)=(1,1,2)$
Cho x, y là các số thực khác 0 thỏa mãn: \(2x^2+\frac{y^2}{4}+\frac{1}{x^2}=4\)
Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức A= 2016+ xy
ĐK: x khác 0
Từ\(2x^2+\frac{y^2}{4}+\frac{1}{x^2}=4\)
\(\Rightarrow x^2+2+\frac{1}{x^2}+x^2+xy+\frac{y^2}{4}=6+xy\)
\(\Leftrightarrow\left(x+\frac{1}{x}\right)^2+\left(x+\frac{y}{2}\right)^2=6+xy\)
Do VT > 0\(\Rightarrow6+xy\ge0\Rightarrow xy\ge6\)
Có A = 2016 + xy > 2016 + 6 = 2022
tth : Viết nhầm :V
Đoạn cuối \(6+xy\ge0\Rightarrow xy\ge-6\)
Có A = 2016 + xy > 2016 - 6 = 2010 !!!
Được rồi chứ gì -.-
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+\frac{1}{x}=0\\x+\frac{y}{2}=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2=1\\x=-\frac{y}{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\left(h\right)\hept{\begin{cases}x=-1\\y=2\end{cases}}\)OK ???
Cho x,y là các số thực với a,b khác 0 thỏa mãn x^2+y^2-xy=4
Tìm giá trị nhỏ nhất và lớn nhất của P=x^2+y^2