Tìm điểm cố định mà đường thẳng d: y = ( 5 – 2 m ) x + m + 1 đi qua với mọi m
A. M 7 2 ; 1 2
B. M (1; 7)
C. M − 1 2 ; 7 2
D. M 1 2 ; 7 2
: Cho đường thẳng: (d): y = (2m – 1)x + m – 2.
1) Tìm m để đường thẳng (d):
a. Đi qua điểm A(1; 6).
b. Song song với đường thẳng 2x + 3y – 5 = 0.
c. Vuông góc với đường thẳng x + 2y + 1 = 0.
2) Tìm điểm cố định mà (d) luôn đi qua với mọi m.
mn giảng giúp mình với, tại mình không hiểu ý ạ:( camon mn nhiều ạ
1.
\(a,\Leftrightarrow2m-1+m-2=6\Leftrightarrow3m=9\Leftrightarrow m=3\\ b,2x+3y-5=0\Leftrightarrow3y=-2x+5\Leftrightarrow y=-\dfrac{2}{3}x+\dfrac{5}{3}\)
Để \(\left(d\right)\text{//}y=-\dfrac{2}{3}x+\dfrac{5}{3}\Leftrightarrow\left\{{}\begin{matrix}2m-1=-\dfrac{2}{3}\\m-2\ne\dfrac{5}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{1}{6}\\m\ne\dfrac{11}{3}\end{matrix}\right.\Leftrightarrow m=\dfrac{1}{6}\)
\(c,x+2y+1=0\Leftrightarrow2y=-x-1\Leftrightarrow y=-\dfrac{1}{2}x-\dfrac{1}{2}\\ \left(d\right)\bot y=-\dfrac{1}{2}x-\dfrac{1}{2}\Leftrightarrow\left(-\dfrac{1}{2}\right)\left(2m-1\right)=-1\\ \Leftrightarrow\dfrac{1}{2}\left(2m-1\right)=1\Leftrightarrow m-\dfrac{1}{2}=1\Leftrightarrow m=\dfrac{3}{2}\)
2.
Gọi điểm cố định đó là \(A\left(x_0;y_0\right)\)
\(\Leftrightarrow y_0=\left(2m-1\right)x_0+m-2\\ \Leftrightarrow2mx_0+m-x_0-2-y_0=0\\ \Leftrightarrow m\left(2x_0+1\right)-\left(x_0+y_0+2\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x_0=-1\\x_0+y_0+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=-\dfrac{1}{2}\\y_0=-\dfrac{3}{2}\end{matrix}\right.\)
cho đường thẳng d y = (m + 2) x + m Tìm m để d
a, song song với đường thẳng d1 : y = -2 x + 3
b ,vuông góc với đường thẳng d2 : y = 1 / 3 x + 1
C, đi qua điểm N( 1,3)
D, Tìm điểm cố định Mà D luôn đi qua với mọi m
\(a,d//d_1\Leftrightarrow\left\{{}\begin{matrix}m+2=-2\\m\ne3\end{matrix}\right.\Leftrightarrow m=-4\\ b,d\perp d_2\Leftrightarrow\dfrac{1}{3}\left(m+2\right)=-1\Leftrightarrow m+2=-3\Leftrightarrow m=-5\\ c,d.qua.N\left(1;3\right)\Leftrightarrow x=1;y=3\Leftrightarrow3=m+2+m\\ \Leftrightarrow2m=1\Leftrightarrow m=\dfrac{1}{2}\)
\(d,\) Gọi điểm đó là \(A\left(x_1;y_1\right)\)
\(\Leftrightarrow y_1=\left(m+2\right)x_1+m\\ \Leftrightarrow y_1-mx_1-2x_1-m=0\\ \Leftrightarrow-m\left(x_1+1\right)+y_1-2x_1=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_1+1=0\\y_1-2x_1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=-1\\y_1=-2\end{matrix}\right.\)
Vậy \(A\left(-1;-2\right)\) luôn đi qua D với mọi m
Cho đường thẳng d: y = (3m 2 +1)x + m 2 - 4. Tìm điểm cố định mà đường thẳng d luôn đi qua với mọi m
Cho đường thẳng d : y = (m + 1) x – m + 2 (m là tham số) a. Tìm điểm I là điểm cố định mà d luôn đi qua với mọi m.
Giả sử đường thẳng d luôn đi qua điểm cố định \(I\left(x_0;y_0\right)\) \(\Rightarrow\) với mọi m ta luôn có:
\(y_0=\left(m+1\right)x_0-m+2\)
\(\Leftrightarrow m\left(x_0-1\right)+x_0-y_0+2=0\)
\(\Rightarrow\left\{{}\begin{matrix}x_0-1=0\\x_0-y_0+2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_0=1\\y_0=3\end{matrix}\right.\)
Vậy \(I\left(1;3\right)\)
Xét các đường thẳng d có phương trình: (2m+3)x + (m+5)y + ( 4m-1) = 0 ( m là tham số). Tìm điểm cố định mà mọi đường thẳng d đều đi qua
Giả sử (d) đi qua điểm cố định \(M\left(x_0;y_0\right)\) . Khi đó :
\(\left(2m+3\right)x_0+\left(m+5\right)y_0+\left(4m-1\right)=0\)
\(\Leftrightarrow2mx_0+3x_0+my_0+5y_0+4m-1=0\)
\(\Leftrightarrow m\left(2x_0+y_0+4\right)+\left(3x_0+5y_0-1\right)=0\)
\(\Rightarrow\hept{\begin{cases}2x_0+y_0+4=0\\3x_0+5y_0-1=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x_0=-3\\y_0=2\end{cases}}\)
Vậy (d) luôn đi qua điểm cố định \(M\left(-3;2\right)\)
Cho hai đường thẳng (d1):mx+(m-2)y+m+2=0 và (d2):(2-m)x+my-m-2=0
a) Tìm điểm cố định mà (d1) luôn đi qua và điểm cố định mà (d2) luôn đi qua
b) Chứng minh hai đường thẳng (d1) ,(d2) luôn cắt nhau tại một điểm I và khi m thay
đổi thì điểm I luôn thuộc một đường tròn cố định.
Cho đường thẳng y+(m+1).x+m(d)
a, Tìm giá trị của m để đường thẳng (d) đi qua điểm A(1;2)
b, Tìm giá trị của m để đường thẳng (d) song song với đườgn thẳng y=2x+3
c, Tìm điểm cố định mà đường thẳng (d) luôn đi qua với mọi m
Cho đường thẳng y+(m+1).x+m(d)
a, Tìm giá trị của m để đường thẳng (d) đi qua điểm A(1;2)
b, Tìm giá trị của m để đường thẳng (d) song song với đườgn thẳng y=2x+3
c, Tìm điểm cố định mà đường thẳng (d) luôn đi qua với mọi m
a: Thay x=1 và y=2 vào (d), ta được:
2m+1=2
hay m=1/2
Cho đường thẳng y+(m+1).x+m(d)
a, Tìm giá trị của m để đường thẳng (d) đi qua điểm A(1;2)
b, Tìm giá trị của m để đường thẳng (d) song song với đườgn thẳng y=2x+3
c, Tìm điểm cố định mà đường thẳng (d) luôn đi qua với mọi m
b: Để hai đường song song thì m+1=2
hay m=1