Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyen Hai Yen
Xem chi tiết
NV Phú
Xem chi tiết
NV Phú
15 tháng 3 2021 lúc 20:46

ai giải mk vs ạ

 

Cherry
15 tháng 3 2021 lúc 20:48
answer-reply-imageBn tham khảo nhé!
Uyên Phạm
15 tháng 3 2021 lúc 20:50

undefined

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 8 2019 lúc 10:36

c) Hệ phương trình đã cho có nghiệm

Đề kiểm tra Toán 9 | Đề thi Toán 9

Theo đề bài : x= y

Đề kiểm tra Toán 9 | Đề thi Toán 9

Vậy với Đề kiểm tra Toán 9 | Đề thi Toán 9 thì hệ phương trình có nghiệm (x; y) thỏa mãn x = 2 y

khánh hiền
Xem chi tiết
Nguyễn Minh Quang
19 tháng 1 2021 lúc 0:59

a, tại m=2 thì hệ tương đương với\(\hept{\begin{cases}x+2y=2\\2x-y=2\end{cases}\Leftrightarrow\hept{\begin{cases}x+2y=2\\4x-2y=4\end{cases}\Leftrightarrow\hept{\begin{cases}x+2y=2\\5x=6\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{6}{5}\\y=\frac{2}{5}\end{cases}}}} }\)

b, do thay (x,y)=(2,-1) vào phương trình x+2y=2 không thỏa mãn nên hệ phương trình không nhận cặp (x,y)=(2,-1) là nghiệm

Khách vãng lai đã xóa
Nguyễn Hoàng Duy
Xem chi tiết
tthnew
18 tháng 1 2021 lúc 13:17

Mình mạn phép sửa lại phương trình $2$ của bạn là $mx+3y=1$ nhé.

ĐK: $m\neq 0$

a) Khi $m=2,$ hệ phương trình là:

\(\left\{{}\begin{matrix}-4x+y=5\\2x+3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-4x+y=5\\4x+6y=2\end{matrix}\right.\Rightarrow7y=7\Leftrightarrow y=1\Rightarrow x=-1\)

b) \(\left\{{}\begin{matrix}-2mx+y=5\\mx+3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2mx+y=5\\2mx+6y=2\end{matrix}\right.\Rightarrow7y=7\Leftrightarrow y=1\Rightarrow x=-\dfrac{2}{m}\)

c) Do ta luôn có $y=1$ là số dương nên chỉ cần chọn $m$ sao cho:

\(x=-\dfrac{2}{m}>0\Leftrightarrow m< 0\)

d) \(x^2+y^2=1\Leftrightarrow\left(-\dfrac{2}{m}\right)^2+1^2=1\Leftrightarrow\dfrac{4}{m^2}=0\) (vô lý)

Vậy không tồn tại $m$ sao cho $x^2+y^2=1.$

Hải Yến
Xem chi tiết
Khang Diệp Lục
3 tháng 2 2021 lúc 8:46

Thay k=1 và HPT ta có: 

\(\left\{{}\begin{matrix}x+y=3.1-2\\2x-y=5\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x+y=1\\2x-y=5\end{matrix}\right.\)

\(\left\{{}\begin{matrix}2x+2y=2\\2x-y=5\end{matrix}\right.\)

\(\left\{{}\begin{matrix}2x+2y=2\\3y=-3\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)

Vậy HPT có nghiệm (x;y) = (2;-1)

Khang Diệp Lục
3 tháng 2 2021 lúc 9:17

b) tìm k để hệ phương trình có nghiệm ( x ; y) sao cho \(x^2-y-\dfrac{5}{y}+1=4\)

\(\left\{{}\begin{matrix}x+y=3k-2\\2x-y=5\end{matrix}\right.\)

\(\left\{{}\begin{matrix}y=3k-2-x\\2x-\left(3k-2-x\right)=5\end{matrix}\right.\)

\(\left\{{}\begin{matrix}y=3k-2-x\\2x-3k+2+x=5\end{matrix}\right.\)

\(\left\{{}\begin{matrix}y=3k-2-x\\3x=3k+3\end{matrix}\right.\)

\(\left\{{}\begin{matrix}y=3k-2-x\\x=k+1\end{matrix}\right.\)

Ta có \(\text{ x= k+1 }=>y=2k-3\) (*)

Thay vào biểu thức đã cho ở đề bài ta có :

 \(x^2-y-\dfrac{5}{y}+1=4\)

\(\left(k+1\right)^2-2k+3-\dfrac{5}{2k-3}+1=4\)

\(k^2+2k+1-2k+3-\dfrac{5}{2k-3}+1=4\)

Sau một hồi bấm máy tính Casio thì ra k=2

Vậy k=2 thì Thỏa mãn yêu cầu đề bài

 

 

Khang Diệp Lục
3 tháng 2 2021 lúc 9:18

Lần sau bạn dùng Latex đánh đề bài cho dễ nhìn nha, mình sợ chép lại đề bài bị sai @@

ly nguyen
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 1 2023 lúc 0:38

a: Khi m=-2 thì hệ sẽ là:

y+4=5 và -2x+3y=1

=>y=1 và -2x=1-3y=1-3=-2

=>x=1 và y=1

b: \(\left\{{}\begin{matrix}y=2m+5\\mx+3\left(2m+5\right)=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2m+5\\mx=1-6m-15=-6m+14\end{matrix}\right.\)

=>x=-6m+14/m và y=2m+5

Để hệ có nghiệm (x,y)>0 thì -6m+14/m>0 và 2m+5>0

=>m>-5/2 và \(\dfrac{6m-14}{m}< 0\)

=>m>-5/2 và 0<m<7/3

=>0<m<7/3

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 11 2019 lúc 6:15

Từ PT (1) ta có: y = (a + 1)x – (a + 1) (*) thế vào PT (2) ta được:

x + ( a – 1 ) [ ( a + 1 ) x – ( a + 1 ) ] = 2   x + ( a 2 – 1 ) x – ( a 2 – 1 ) = 2

⇔ a 2 x = a 2 + 1   ( 3 )

Với a ≠ 0, phương trình (3) có nghiệm duy nhất x = a 2 + 1 a 2 . Thay vào (*) ta có:

y = ( a + 1 ) a 2 + 1 a 2 − ( a + 1 ) = a + 1 a 2 + 1 − a 2 a 2 + 1 a 2 = a 3 + a + a 2 + 1 − a 3 − a 2 a 2 = a + 1 a 2  

Suy ra hệ phương trình đã cho có nghiệm duy nhất ( x ;   y ) = a 2 + 1 a 2 ; a + 1 a 2

Hệ phương trình có nghiệm nguyên: x ∈ ℤ y ∈ ℤ ⇔ a 2 + 1 a 2 ∈ ℤ a + 1 a 2 ∈ ℤ ( a ∈ ℤ )  

Điều kiện cần: x = a 2 + 1 a 2 = 1 + 1 a 2 ∈ ℤ ⇔ 1 a 2 ∈ ℤ mà a 2 > 0   ⇒ a 2 = 1

⇔ a = ± 1 ( T M   a ≠ 0 )

Điều kiện đủ:

a = −1 ⇒  y = 0  (nhận)

a = 1 y = 2  (nhận) 

Vậy a = ± 1 hệ phương trình đã cho có nghiệm nguyên.

Đáp án: D

Le Xuan Mai
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 1 2024 lúc 18:39

a: Thay m=-1 vào hệ phương trình, ta được:

\(\left\{{}\begin{matrix}x-y=3\cdot\left(-1\right)=-3\\-x-y=\left(-1\right)^2-2=-3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-2y=-6\\x-y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=y-3=3-3=0\end{matrix}\right.\)

Vương Tiểu Mi
Xem chi tiết
Thành Vinh Lê
30 tháng 12 2018 lúc 21:41

Từ hệ được x+y=1

a)Thay vào được x=1;y=0

b)Với mọi a

c)Thay vào x+y=1 tìm x;y

Thay ngược vào hệ tìm a

tth_new
31 tháng 12 2018 lúc 8:16

a) Khi a = 2 hệ phương trình đã cho tương đương với:

 \(\hept{\begin{cases}x+2x=3\left(1\right)\\2x-y=2\left(2\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}3x=3\\2x-y=2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\2x-2=y\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\2.1-2=0=y\end{cases}}\)

Do vậy \(\left(x;y\right)=\left(1;0\right)\)

b) Ta có:  \(x+y=\left(x+ax\right)-\left(ax-y\right)=3-2=1>0\forall a\)

c) Lấy (1) trừ (2),vế với vế,ta có: \(x+y=1\)

Thay vào,ta có: \(\sqrt{2}.y+y=1\Leftrightarrow y\left(\sqrt{2}+1\right)=1\)

\(\Rightarrow y=\frac{1}{\sqrt{2}+1}\Rightarrow x=1-\frac{1}{\sqrt{2}+1}=\frac{\sqrt{2}}{\sqrt{2}+1}\)

Thay vào hệ phương trình ban đầu,ta có: \(\hept{\begin{cases}\frac{\sqrt{2}}{\sqrt{2}+1}+\frac{\sqrt{2}}{\sqrt{2}+1}.a=3\left(3\right)\\\frac{\sqrt{2}}{\sqrt{2}+1}.a-\frac{\sqrt{1}}{\sqrt{2}+1}=2\left(4\right)\end{cases}}\)

Lấy (3) + (4),vế với vế,ta có: \(\frac{2\sqrt{2}}{\sqrt{2}+1}.a=5\Leftrightarrow a=\frac{10+5\sqrt{2}}{4}\)