Cho tam giác ABC có A ^ = 120 ° , A B = A C = a . Quay tam giác ABC (bao gồm cả điểm trong tam giác) quanh đường thẳng AB ta được một khối tròn xoay. Thể tích khối tròn xoay đó bằng
A. πa 3 3
B. πa 3 4
C. πa 3 3 2
D. πa 3 3 4
cho tam giác ABC có tâm O (các đỉnh ghi theo chiều kim đồng hồ )
a,tìm ảnh của B ,đoạn thẳng BC qua phép quay tâm O góc quay 60 độ
b,tìm ảnh của tam giác OAB qua phép quay tâm O góc quay -120 độ
c, tìm ảnh của tam giác ABC qua phép quay tâm A góc quay tam giác
Cho tam giác ABC cân tại A, góc B A C ^ = 120 ° và AB=4cm. Tính thể tích khối tròn xoay lớn nhất có thể khi ta quay tam giác ABC xung quanh đường thẳng chứa một cạnh của tam giác ABC
A. 16 3 π
B. 16 π 3
C. 16 π 3
D. 16 π
Chọn đáp án D
Phương pháp
Sử dụng công thức tính thể tích khối nón có chiều cao h và bán kính đáy r là
Cách giải
Áp dụng định lí cosin trong tam giác ABC ta có:
+) Gọi H là trung điểm của BC.
Khi quay tam giác ABC quanh cạnh BC ta được 2 hình nón có chung bán kính đáy AH, đường cao lần lượt là BH và CH với
+) Khi quay tam giác ABC quanh AB ta được khối tròn xoay như sau:
Gọi D là điểm đối xứng C qua AB, H là trung điểm của CD
+) Do điểm B và C có vai trò như nhau nên khi quay tam giác ABC quanh AC ta cũng nhận được khối tròn xoay có thể tích bằng 16.
Vậy thể tích lớn nhất có thể được khi quay tam giác ABC quanh một đường thẳng chứa cạnh của tam giác ABC là 16π
Cho tam giác ABC có BAC = 120 ° , AB = AC = a . Quay tam giác ABC (bao gồm cả điểm trong tam giác) quanh đường thẳng AB ta được một khối tròn xoay. Thể tích khối tròn xoay đó bằng :
A. πa 3 3
B. πa 3 4
C. πa 3 3 2
D. πa 3 3 4
Đáp án B
Ta có V = 1 3 π . OC 2 . BO - 1 3 πOC 2 . AO = 1 3 π . OC 2 . AB .
Lại có sin 60 ° = O C A C ⇒ O C = a 3 2 ⇒ V = πa 3 4 .
Cho tam giác ABC có \(\widehat A = {120^ \circ },b = 8,c = 5.\) Tính:
a) Cạnh a và các góc \(\widehat B,\widehat C.\)
b) Diện tích tam giác ABC
c) Bán kính đường tròn ngoại tiếp và đường cao AH của tam giác.
a) Áp dụng định lí cosin, ta có:
\(\begin{array}{l}{a^2} = {b^2} + {c^2} - 2bc.\cos A\\ \Leftrightarrow {a^2} = {8^2} + {5^2} - 2.8.5.\cos {120^ \circ } = 129\\ \Rightarrow a = \sqrt {129} \end{array}\)
Áp dụng định lí sin, ta có:
\(\begin{array}{l}\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} \Rightarrow \frac{{\sqrt {129} }}{{\sin {{120}^ \circ }}} = \frac{8}{{\sin B}} = \frac{5}{{\sin C}}\\ \Rightarrow \left\{ \begin{array}{l}\sin B = \frac{{8.\sin {{120}^ \circ }}}{{\sqrt {129} }} \approx 0,61\\\sin C = \frac{{5.\sin {{120}^ \circ }}}{{\sqrt {129} }} \approx 0,38\end{array} \right. \Rightarrow \left\{ \begin{array}{l}\widehat B \approx 37,{59^ \circ }\\\widehat C \approx 22,{41^ \circ }\end{array} \right.\end{array}\)
b) Diện tích tam giác ABC là: \(S = \frac{1}{2}bc.\sin A = \frac{1}{2}.8.5.\sin {120^ \circ } = 10\sqrt 3 \)
c)
+) Theo định lí sin, ta có: \(R = \frac{a}{{2\sin A}} = \frac{{\sqrt {129} }}{{2\sin {{120}^ \circ }}} = \sqrt {43} \)
+) Đường cao AH của tam giác bằng: \(AH = \frac{{2S}}{a} = \frac{{2.10\sqrt 3 }}{{\sqrt {129} }} = \frac{{20\sqrt {43} }}{{43}}\)
Cho tam giác ABC có góc A 120o. Một đường thẳng qua A cắt BC tại D, chia tamgiác ABC thành hai tam giác cân. Tính số đo các góc B và C của tam giác ABC.
cho tam giác ABC có góc A nhỏ hơn 120 độ dựng phía ngoài tam giác ABC là các tam giác đều ABD và ACE a) chứng minh BE=CD b) tính góc BIC c) chứng minh IA+IB=ID
Cho tam giác ABC có ba cạnh là a, b, c là \(a=x^2+x+1\), \(b=2x+1\), \(c=x^2-1\). Chứng minh rằng tam giác có một góc bằng 120 độ.
\(cosA=\dfrac{b^2+c^2-a^2}{2bc}=\dfrac{\left(2x+1\right)^2+\left(x^2-1\right)^2-\left(x^2+x+1\right)^2}{2\left(2x+1\right)\left(x^2-1\right)}\)
\(=\dfrac{-2x^3-x^2+2x+1}{2\left(2x+1\right)\left(x^2-1\right)}=\dfrac{-\left(2x+1\right)\left(x^2-1\right)}{2\left(2x+1\right)\left(x^2-1\right)}=-\dfrac{1}{2}\)
\(\Rightarrow A=120^0\)
Cho tam giác ABC có góc ngoài đỉnh C bằng 120 độ ,A -B =60 độ .Tính các góc của tam giác ABC
Iu mn nhìu !
Vì góc ngoài đỉnh C bằng 120 độ nên \(\widehat{A}+\widehat{B}=120^0\)
Mà \(\widehat{A}-\widehat{B}=60^0\Rightarrow\left\{{}\begin{matrix}\widehat{A}=\left(120^0+60^0\right):2=90^0\\\widehat{B}=120^0-90^0=30^0\end{matrix}\right.\)
\(\Rightarrow\widehat{C}=180^0-90^0-30^0=60^0\)
Cho tam giác ABC vuông tại A. AB=c, AC=b. Quay tam giác ABC xung quanh đường thẳng chứa cạnh AB được một hình nón có thể tích bằng: