Giải các phương trình sau: -5/9 x + 1 = 2/3 x – 10
Giải các phương trình sau:
4(2x + 7)2 - 9(x + 3)2 = 0
(x + 1)(x + 2)(x + 3)(x + 4)(x + 5) = 10
a: \(\Leftrightarrow\left(4x+14\right)^2-\left(3x+9\right)^2=0\)
=>(4x+14+3x+9)(4x+14-3x-9)=0
=>(7x+23)(x+5)=0
=>x=-23/7 hoặc x=-5
\(a,\\ \Leftrightarrow7x^2+58x+115=0\\ \Leftrightarrow\left(x+5\right)\left(7x+23\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}x+5=0\\7x+23=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-5\\x=-\dfrac{23}{7}\end{matrix}\right.\)
\(b,\\ \Leftrightarrow\left[\left(x+1\right)\left(x+5\right)\right]\left[\left(x+3\right)\left(x+4\right)\right]=0\\ \Leftrightarrow\left(x^2+6x+5\right)\left(x^2+6x+8\right)=0\\ \LeftrightarrowĐặt.x^2+6x+5=a\\ \Leftrightarrow a=a\left(a+3\right)=10\\ \Leftrightarrow a^2+3a-10=0\\ \Leftrightarrow\left(a+5\right)\left(a-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=-5\\a=2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x^2+6x+5=-5\\x^2+6x+5=2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x^2+6x+10=0\\x^2+6x+3=0\end{matrix}\right.\\ \left(Vô.n_o\Delta=36-40=-4< 0\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3+\sqrt{6}\\x=-3-\sqrt{6}\end{matrix}\right.\)
1.giải các phương trình sau:
a, 3(2x+1)/4 - 5x+3/6 = 2x-1/3 - 3-x/4
b, 19/4 - 2(3x-5)/5 = 3-2x/10 - 3x-1/4
c, x-2*3/2+3 + x-3*5/3+5 + x-5*2/5+2 = 10
d, x-3/5*7 + x-5/3*7 + x-7/3*5 = 2(1/3 + 1/5 + 1/7)
2. giải các phương trình:
a, x-1/9 + x-2/8 = x-3/7 + x-4/6
b, (1/1*2 + 1/2*3 + 1/3*4 + ... + 1/9*10) (x-1) + 1/10x = x- 9/10
Câu 1 :
a, \(\frac{3\left(2x+1\right)}{4}-\frac{5x+3}{6}=\frac{2x-1}{3}-\frac{3-x}{4}\)
\(\Leftrightarrow\frac{6x+3}{4}+\frac{3-x}{4}=\frac{2x-1}{3}+\frac{5x+3}{6}\)
\(\Leftrightarrow\frac{5x+6}{4}=\frac{9x+1}{6}\Leftrightarrow\frac{30x+36}{24}=\frac{36x+4}{24}\)
Khử mẫu : \(30x+36=36x+4\Leftrightarrow-6x=-32\Leftrightarrow x=\frac{32}{6}=\frac{16}{3}\)
tương tự
\(\frac{19}{4}-\frac{2\left(3x-5\right)}{5}=\frac{3-2x}{10}-\frac{3x-1}{4}\)
\(< =>\frac{19.5}{20}-\frac{8\left(3x-5\right)}{20}=\frac{2\left(3-2x\right)}{20}-\frac{5\left(3x-1\right)}{20}\)
\(< =>95-24x+40=6-4x-15x+5\)
\(< =>-24x+135=-19x+11\)
\(< =>5x=135-11=124\)
\(< =>x=\frac{124}{5}\)
\(\frac{\left(x-2\right).3}{2}+3+\frac{\left(x-3\right).5}{3}+5+\frac{\left(x-5\right).2}{5}+2=10\)
\(< =>\frac{\left(x-2\right).3.15}{30}+\frac{\left(x-3\right).5.10}{30}+\frac{\left(x-5\right).2.6}{30}=10-2-3-5\)
\(< =>\frac{\left(x-2\right).45+\left(x-3\right).50+\left(x-5\right).12}{30}=0\)
\(< =>45x-90+50x-150+12x-60=0\)
\(< =>107x-300=0< =>x=\frac{300}{107}\)
3.15 giải các phương trình sau :
a) ( x - 6 ) ( 2x - 5 ) ( 3x + 9 ) = 0
b) 2x( x - 3 ) + 5( x - 3 ) = 0
c) ( x^2 - 4 ) - ( x - 2 ) ( 3 - 2x ) =0
3.16 tìm m để phương trình sau có nghiệm :
x=-7 ( 2m - 5 )x - 2m^2 + 8
3.17 giải các phương trình sau :
a) ( 2x - 1 )^2 - ( 2x + 1 ) = 0
\(a,\left(x-6\right)\left(2x-5\right)\left(3x+9\right)=0\Leftrightarrow\left[{}\begin{matrix}x-6=0\Leftrightarrow x=6\\2x-5=0\Leftrightarrow x=\dfrac{5}{2}\\3x+9=0\Leftrightarrow x=-3\end{matrix}\right.\)
\(b,2x\left(x-3\right)+5\left(x-3\right)=0\Leftrightarrow\left(2x+5\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x-3=0\Leftrightarrow x=3\\2x+5=0\Leftrightarrow x=-\dfrac{5}{2}\end{matrix}\right.\)
\(c,x^2-4-\left(x-2\right)\left(3-2x\right)=0\Leftrightarrow\left(x-2\right)\left(x+2\right)-\left(x-2\right)\left(3-2x\right)=0\Leftrightarrow\left(x-2\right)\left(x+2-3+2x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\)
\(x=-7\left(2m-5\right)x-2m^2+8\Leftrightarrow x+7\left(2m-5\right)=8-2m^2\Leftrightarrow x\left(14m-34\right)=8-2m^2\)
\(ycđb\Leftrightarrow14m-34\ne0\Leftrightarrow m\ne\dfrac{34}{14}\)\(\Rightarrow x=\dfrac{8-2m^2}{14m-34}\)
\(3.17\Leftrightarrow4x^2-4x+1-2x-1=0\Leftrightarrow4x^2-6x=0\Leftrightarrow x\left(4x-6\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{3}{2}\end{matrix}\right.\)
3.15:
a, \(\Leftrightarrow\left\{{}\begin{matrix}x-6=0\\2x-5=0\\3x+9=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=6\\x=\dfrac{5}{2}\\x=-\dfrac{9}{3}=-3\end{matrix}\right.\)
b, \(\Leftrightarrow\left(x-3\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\x=-\dfrac{5}{2}\end{matrix}\right.\)
c, \(\Leftrightarrow\left(x-2\right)\left(x+2\right)-\left(x-2\right)\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2-3+2x\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\)
3.16
\(\Leftrightarrow\left(2m-5\right).-7-2m^2+8=0\)
\(\Leftrightarrow-14m+35-2m^2+8=0\)
\(\Leftrightarrow-14m-2m^2+43=0\)
\(\Leftrightarrow-2\left(7m+m^2\right)=-43\)
\(\Leftrightarrow m\left(7-m\right)=\dfrac{43}{2}\)
\(\Leftrightarrow\dfrac{m\left(7-m\right)}{1}-\dfrac{43}{2}=0\)
\(\Leftrightarrow\dfrac{14m-2m^2}{2}-\dfrac{43}{2}=0\)
pt vô nghiệm
Bài 1: Giải phương trình và bất phương trình sau: 1. 5.(2-3x). (x-2) = 3.( 1-3x) 2. 4x^2 + 4x + 1= 0 3. 4x^2 - 9= 0 4. 5x^2 - 10=0 5. x^2 - 3x= -2 6. |x-5| - 3= 0
Bài 1. Giải các phương trình sau
(x+1)(x+9)=(x+3)(x+5)
(x-1)^3 -x(x+1)^2=5x(2-x)-11(x+2)
Bài 1:
(x+1)(x+9)=(x+3)(x+5)
⇔x2+10x+9=x2+8x+15
⇔2x-6=0
⇔x=3
(x-1)3-x(x+1)2=5x(2-x)-11(x+2)
⇔x3-3x2+3x-1-x3-2x2-x=10x-5x2-11x-22
⇔-5x2+2x-1=-5x2-x-22
⇔3x+21=0
⇔x=-7
Giải phương trình sau:
1, |x+8|=4x-10
2, |x-9|=2x+13
3, |x-1|-2|x|=-2
4, |2x-5|=|x+3|
5, |x-1|=|3x+10|
1) * Xét \(x\ge-8\) thì \(x+8\ge0\)nên \(|x+8|=x+8\)
Đặt PT là A
A trở thành: x+8=4x-10
\(\Leftrightarrow x-4x=-10-8\)
\(\Leftrightarrow-3x=-18\)
\(\Leftrightarrow x=\frac{-18}{-3}=6\)( thỏa ĐK vì x>-8)
* Xét \(x< -8\)thì\(x+8< 0\)nên \(|x+8|=-\left(x+8\right)=-x-8\)
A trở thành: \(-x-8=4x-10\)
\(\Leftrightarrow-x-4x=-10+8\)
\(\Leftrightarrow-5x=-2\)
\(\Leftrightarrow x=\frac{-5}{-2}=\frac{5}{2}\)(không thỏa Đk vì 5/2>-8)
Vậy tập nghiệm của PT đã cho là: S={6}
2) * Xét \(x\ge9\)thì\(x-9\ge0\)nên \(|x-9|=x-9\)
ĐẶT PT ĐỀ CHO LÀ B
B trở thành:\(x-9=2x+13\)
\(\Leftrightarrow x-2x=13+9\)
\(\Leftrightarrow-x=22\)
\(\Leftrightarrow x=-22\)(không thòa Đk do x<9)
*Xét \(x< 9\)thì\(x-9< 0\)nên \(|x-9|=-\left(x-9\right)=9-x\)
B trở thành:9-x=2x+13
\(\Leftrightarrow-x-2x=13-9\)
\(\Leftrightarrow-3x=4\)
\(\Leftrightarrow x=\frac{4}{-3}=\frac{-4}{3}\)(thỏa Đk vì x<9)
Vậy tập nghiệm của PT đã cho là: S={-4/3}
giúp bạn được nhiêu đó tk mk nha
Giải các bất phương trình sau
a) 4(x-3)2-(2x-1)2<10
b) x(x-5)(x+5)-(x+2)(x2-2x+4)< hoặc = 3
\(a,4\left(x-3\right)^2-\left(2x-1\right)^2< 10\)
\(\Leftrightarrow4\left(x^2-6x+9\right)-\left(4x^2-4x+1\right)-10< 0\)
\(\Leftrightarrow4x^2-24x+36-4x^2+4x-1-10< 0\)
\(\Leftrightarrow-20x< -25\)
\(\Leftrightarrow x>\dfrac{5}{4}\)
\(b,x\left(x-5\right)\left(x+5\right)-\left(x+2\right)\left(x^2-2x+4\right)\le3\)
\(\Leftrightarrow x\left(x^2-25\right)-\left(x^3-2x^2+4x+2x^2-4x+8\right)\le3\)
\(\Leftrightarrow x^3-25x-\left(x^3+8\right)\le3\)
\(\Leftrightarrow x^3-25x-x^3-8-3\le0\)
\(\Leftrightarrow-25x\le11\)
\(\Leftrightarrow x\ge-\dfrac{11}{25}\)
Giải các phương trình sau
a, 3x - 1 - 5 ( x + 2 ) = x - 4
b, ( 5x - 2 ) ( 3 - 2x ) = 4x2 -- 9
c, 1/x+2 - 3/x-2 = 4x + 10/x2 -- 4
a)\(3x-1-5\left(x+2\right)=x-4\)
\(\Leftrightarrow3x-1-5x-10=x-4\)
\(\Leftrightarrow3x-5x-x=-4+1+10\)
\(\Leftrightarrow-3x=7\)
\(\Leftrightarrow x=-\frac{7}{3}\)
\(\left(5x-2\right).\left(3-2x\right)=\left(2x\right)^2-3^2=\left(2x-3\right).\left(2x+3\right)\)
\(\Leftrightarrow\left(5x-2\right).\left(2x-3\right)=-\left(2x-3\right).\left(2x+3\right)\)
\(\Leftrightarrow5x-2=-2x-3\Leftrightarrow7x=-1\Rightarrow x=-\frac{1}{7}\)
c) \(\frac{1}{x+2}-\frac{3}{x-2}=\frac{4x+10}{x^2-4}\left(đkxđ:x\ne\pm2\right)\)
\(\Leftrightarrow\frac{x-2-3x-6}{x^2-4}=\frac{4x+10}{x^2-4}\)
<=> -2x - 8 = 4x + 10
<=> -2x - 4x = 10 + 8
-6x = 18
x= -3(tm)
KL:...
Giải các phương trình sau: (TM ĐK)
1) \(\dfrac{11}{x}=\dfrac{9}{x+1}+\dfrac{2}{x-4}\)
2) \(\dfrac{14}{3x-12}-\dfrac{2+x}{x-4}=\dfrac{3}{8-2x}-\dfrac{5}{6}\)
3) \(\dfrac{x+5}{x^2-5x}-\dfrac{x+25}{2x^2-50}=\dfrac{x-5}{2x^2+10}\)
4) \(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=\dfrac{16}{x^2-1}\)
5) \(\left(1-\dfrac{x-1}{x+1}\right)\left(x+2\right)=\dfrac{x+1}{x-1}+\dfrac{x-1}{x+1}\)
mng giúp mk bài này nha. Cảm ơn bạn nhiều
\(1,\left(dk:x\ne0,-1,4\right)\)
\(\Leftrightarrow\dfrac{9}{x+1}+\dfrac{2}{x-4}-\dfrac{11}{x}=0\)
\(\Leftrightarrow\dfrac{9x\left(x-4\right)+2x\left(x+1\right)-11\left(x+1\right)\left(x-4\right)}{x\left(x+1\right)\left(x-4\right)}=0\)
\(\Leftrightarrow9x^2-36x+2x^2+2x-11x^2+44x-11x+44=0\)
\(\Leftrightarrow-x=-44\)
\(\Leftrightarrow x=44\left(tm\right)\)
\(2,\left(đk:x\ne4\right)\)
\(\Leftrightarrow\dfrac{14}{3\left(x-4\right)}-\dfrac{2+x}{x-4}-\dfrac{3}{2\left(x-4\right)}+\dfrac{5}{6}=0\)
\(\Leftrightarrow\dfrac{14.2-6\left(2+x\right)-3.3+5\left(x-4\right)}{6\left(x-4\right)}=0\)
\(\Leftrightarrow28-12-6x-9+5x-20=0\)
\(\Leftrightarrow-x=13\)
\(\Leftrightarrow x=-13\left(tm\right)\)