Cho A = 1 + 2 + 2 2 + . . . + 2 2007 . Chứng minh: A = 2 2008 - 1
a)Cho A= 1/2^2+1/3^2+...+1/n^2.CMR A<1
b)Cho B=1/2^2+1/4^2+1/6^2+...+1/(2n)^2.CMR B<1/2
c)Cho C=3/4+8/9+15/16+...+n^2-1/n^2.CMR C<n-2
Bài 1: Cho a,b,c thỏa mãn (a+b-c)/c=(b+c-a)/a=(c+a-b)/b
tính P=(1+b/a)*(1+c/b)*(1+a/c)
Bài 2: Cho a+b+c=0
tính B=((a^2+b^2-c^2)*(b^2+c^2-a^2)*(c^2+a^2-b^2))/(10*a^2*b^2*c^2)
Bài 3: cho a^3*b^3+b^3*c^3+c^3*a^3=3*a^3*b^3*c^3
tính M(1+a/b)*(1+b/c)*(1+c/a)
Bài 4: cho 3 số a,b,c TM a*b*c=2016
tính P=2016*a/(a*b+2016*a+2016) + b/(b*c+b+2016) + c/(a*c+c+1)
Bài 5: cho a+b+c=0
tính Q=1/(a^2+b^2-c^2) + 1/(b^2+c^2-a^2) + 1/(a^2+c^2-b^2)
Cho biểu thức \(A=1+2^1+2^1+2^2+2^3+...+2^{2021}\)
Tìm x thuộc N sao cho \(2^x=A+1\)
A=1+21+22 +...+22021
2A = 2( 1+21+22 +...+22021 )
2A = 2 + 22 + 23 + ... + 22022
2A - A = ( 2 + 22 + 23 + ... + 22022 ) - ( 1+21+22 +...+22021 )
A = 22022 - 1
2x = A + 1
=> 2x = 22022 - 1 + 1
=> 2x = 22022
=> x = 2022
Vậy x = 2022
2A=2+2^2+...+2^2022
=>A=2^2022-1
2^x=A+1
=>2^x=2^2022
=>x=2022
a, Cho A= 1/99 + 2/98 + 3/47 + .......... + 98/2 + 99/1
B= 1/2 + 1/3 + 1/4 + ..........+ 1/99 + 1/100
Tính B/A
b, Cho A= 1/49 + 2/48 + 3/47 +.......+ 48/2 +49/1
B= 1 + 2/3 + 2/4 +......+ 2/49 + 2/50
Tính A/B
a: \(A=\left(\dfrac{1}{99}+1\right)+\left(\dfrac{2}{98}+1\right)+...+\left(\dfrac{98}{2}+1\right)+1\)
\(=\dfrac{100}{99}+\dfrac{100}{98}+...+\dfrac{100}{2}+\dfrac{100}{100}\)
\(=100\cdot\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)\)=100B
=>B/A=1/100
b: \(A=\left(\dfrac{1}{49}+1\right)+\left(\dfrac{2}{48}+1\right)+\left(\dfrac{3}{47}+1\right)+...+\left(\dfrac{48}{2}+1\right)+\left(1\right)\)
\(=\dfrac{50}{49}+\dfrac{50}{48}+....+\dfrac{50}{2}+\dfrac{50}{50}\)
\(=50\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)\)
\(B=\dfrac{2}{2}+\dfrac{2}{3}+\dfrac{2}{4}+...+\dfrac{2}{49}+\dfrac{2}{50}\)
\(=2\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)\)
=>A/B=25
Cho biểu thức A=1+2^1+2^2+2^3+...+2^2021
Tìm xϵ N sao cho 2^x=A +1
1. Cho a,b >0
Tìm min: Q= \(\sqrt{a^2+\dfrac{1}{b^2}}+\sqrt{b^2+\dfrac{1}{a^2}}\)
2. Cho a,b,c >0 và a+b+c ≤ 1
Tìm min P=\(\dfrac{1}{a^2+2bc}+\dfrac{1}{b^2+2ca}+\dfrac{1}{c^2+2ab}\)
\(1,\text{Áp dụng Mincopxki: }\\ Q\ge\sqrt{\left(a+\dfrac{1}{a}\right)^2+\left(b+\dfrac{1}{b}\right)^2}\ge\sqrt{2^2+2^2}=\sqrt{8}=2\sqrt{2}\\ \text{Dấu }"="\Leftrightarrow a=b\)
\(2,\text{Áp dụng BĐT Cauchy-Schwarz: }\\ P\ge\dfrac{9}{a^2+b^2+c^2+2ab+2bc+2ca}=\dfrac{9}{\left(a+b+c\right)^2}\ge\dfrac{9}{1}=9\\ \text{Dấu }"="\Leftrightarrow a=b=c=\dfrac{1}{3}\)
Mình có một bài toán CMR a^7 - a chia hết cho 7 không biết giải nên lên hỏi bác google thì nó giải như này:
a^7 - a = a(a^6 - 1) = a(a^2 - 1)(a^2 + a + 1)(a^2 - a + 1)
Nếu a = 7k (k thuộc Z) thì a chia hết cho 7
Nếu a = 7k + 1 (k thuộc Z) thì a^2 - 1 = 49k^2 + 14k chia hết cho 7
Nếu a = 7k + 2 (k thuộc Z) thì a2^ + a + 1 = 49k^2 + 35k + 7 chia hết cho 7
Nếu a = 7k + 3 (k thuộc Z) thì a^2 - a + 1 = 49k^2 + 35k + 7 chia hết cho 7
Trong trường hợp nào củng có một thừa số chia hết cho 7
Vậy: a^7 - a chia hết cho 7
Mình không hiểu vài chỗ:
- Nếu a = 7k nghĩa là sao?
- Nếu a = 7k + 1 (k thuộc Z) thì a^2 - 1 = 49k^2 + 14k chia hết cho 7. Cái khúc "thì a^2 - 1 = 49k^2 + 14k chia hết cho 7" là gì?
- Tương tự, Nếu a = 7k + 3 (k thuộc Z) thì a^2 - a + 1 = 49k^2 + 35k + 7 chia hết cho 7. Cái khúc "thì a^2 - a + 1 = 49k^2 + 35k + 7 chia hết cho 7" là sao?
- a^7 - a sao lại phân tích thành a(a^2 - 1)(a^2 + a + 1)(a^2 - a + 1) được?
- Phân tích thành a(a^2 - 1)(a^2 + a + 1)(a^2 - a + 1) để làm gì?
Nhờ các bạn giải thích hộ mình. Mình cảm ơn trước.
1. Cho A = (−∞; −1]; B = [1; 5] . Tập hợp A ∪ B là
A. (−∞; 5]
B. [−1; 5]
C. (−∞; −1] ∪ [1; 5]
D. \(\varnothing\)
2. Cho A = (−2; 2]; B = (−∞; 0) . Tập hợp A\B là
A. (−2; 0)
B. [2; +∞)
C. [0; 2]
D. ∅
3. Cho A = [-3; + ∞ ), B =(-2; 1]. Phần bù của B trong A là:
A. (-2; 1]
B. (-∞ ; -2]∪(1 ; +∞)
C. ∅
D. [-3 ; -2]∪(1 ; +∞)
Câu 6:C
Câu 8:C
Câu 9:Tìm phần bù của B trong A có nghĩa là tìm A\B
Ý D
cho biểu thức A = 1+ 2 mũ 1 + 2 ^ 1 + 2 ^ 2 + 2 ^ 3 + ... + 2 ^ 2021tìm x thuộc N sao cho 2 ^ x = A +1