Cho tam giác ABC có các đường cao BD, CE. Chứng minh bốn điểm B, E, D, C cùng nằm trên một đường tròn. Chỉ rõ tâm và bán kính của đường tròn đó
Cho tam giác ABC có các đường cao BD và CE. Chứng minh bốn điểm B, E, D, C cùng nằm trên một đường tròn. Chỉ rõ tâm và bán kính của đường tròn đó.
Lời giải:
Vì $\widehat{BEC}=\widehat{BDC}=90^0$ và cùng nhìn cạnh $BC$ nên $BEDC$ là tứ giác nội tiếp.
$\Rightarrow B,E,D,C$ cùng nằm trên một đường tròn.
Gọi $M$ là trung điểm $BC$.
Tam giác vuông $BEC$ có trung tuyến $EM$ tương với với cạnh huyền $BC$ nên $EM=\frac{BC}{2}=BM=CM$
Tương tự với tam giác $BDC$ vuông tại $D$ thì $DM=\frac{BC}{2}=BM=CM$
Do đó:
$EM=BM=CM=DM$ nên tâm đường tròn ngoại tiếp tứ giác $BEDC$ là điểm $M$- trung điểm $BC$
Cho tam giác ABC có đường cao BD, CE. Chứng minh bốn điểm B,E,D,C cùng nằm trên một đường tròn. Chỉ rõ tâm và bán kính của đường tròn
Cho tam giác ABC có các đường cao BD, CE. Biết rằng bốn điểm B, E, D, C nằm trên một đường tròn. Chỉ rõ tâm và bán kính của đường tròn đó
A. Tâm là trọng tâm tam giác ABC và bán kính R = 2/3 AI với I là trung điểm của
B. Tâm là trung điểm AB và bán kính R = AB/2
C.Tâm là giao điểm của BD và EC, bán kính là R = AB/2
D. Tâm là trung điểm BC và bán kính là R = BC/2
Cho tam giác ABC có các đường cao BD, CE. Biết rằng bốn điểm B, E, D, C nằm trên một đường tròn. Chỉ rõ tâm và bán kính của đường tròn đó
A. Tâm là trọng tâm tam giác ABC và bán kính R = 2/3 AI với I là trung điểm của
B. Tâm là trung điểm AB và bán kính R = AB/2
C.Tâm là giao điểm của BD và EC, bán kính là R = AB/2
D. Tâm là trung điểm BC và bán kính là R = BC/2
Cho tam giác ABC đều có cạnh là a các đường cao BD và CE cắt nhau tại H
a)Chứng minh rằng B , E , D ,C cùng thuộc đường tròn
b)Hãy xác định tâm và bán kính của đường tròn đó
c) Chứng minh rằng điểm H nằm trong đường tròn và điểm A nằm ngoài đường tròn biết a = 2 cm
d )Tính OH
a: Xét tứ giác BEDC có
\(\widehat{BEC}=\widehat{BDC}=90^0\)
nên BEDC là tứ giác nội tiếp
=>B,E,D,C cùng thuộc 1 đường tròn
b: Vì \(\widehat{BEC}=\widehat{BDC}=90^0\)
nên B,E,D,C cùng thuộc đường tròn đường kính BC
tâm là trung điểm I của BC
bán kính là BC/2
c: Xét ΔABC có
BD,CE là đường cao
BD cắt CE tại H
Do đó: H là trực tâm của ΔABC
=>AH\(\perp\)BC(1)
ΔABC cân tại A
mà AI là đường trung tuyến
nên AI\(\perp\)BC(2)
Từ (1),(2) suy ra A,H,I thẳng hàng
ΔABC đều
mà BD,CE là các đường cao
nên BD,CE là các đường trung tuyến
=>D,E lần lượt là trung điểm của AC,AB
Xét ΔABC có
BD,CE là các đường trung tuyến
BD cắt CE tại H
Do đó; H là trọng tâm của ΔABC
mà I là trung điểm của BC
nên \(AH=\dfrac{2}{3}AI\) và \(IH=\dfrac{1}{3}IA\)
ΔAIB vuông tại I
=>\(AB^2=AI^2+IB^2\)
=>\(AI^2=2^2-1^2=3\)
=>\(AI=\sqrt{3}\left(cm\right)\)
\(HI=\dfrac{1}{3}HA=\dfrac{1}{3}\sqrt{3}< \dfrac{1}{3}\cdot3=IB=R\)
=>H nằm trong (I)
\(IA=\sqrt{3}>1=IB=R\)
=>A nằm ngoài (I)
Cho tam giác ABC đều có cạnh = a, các đường cao BD và CE cắt nhau tại H
a) Chứng minh: 4 điểm B,E,D,C thuộc cùng 1 đường tròn. Hãy xác định tâm và bán kính của đường tròn ấy
b) Chứng minh: Điểm H nắm trong đường tròn và điểm A nằm ngoài đường tròn đi qua 4 điểm B,E,D,C
a: Xét tứ giác BEDC có
\(\widehat{BEC}=\widehat{BDC}=90^0\)
Do đó: BEDC là tứ giác nội tiếp
Tâm là trung điểm của BC
Bán kính là \(\dfrac{BC}{2}=\dfrac{a}{2}\)
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O). Hai đường cao BD và CE của tam giác ABC cắt nhau tại H. Tia BD và tia CE cắt đường tròn (O) lần lượt tại M, N (M khác B, N khác C)a) Chứng minh bốn điểm B, C, D, E cùng nằm trên một đường tròn.b) Chứng minh DE // MNc) Đường tròn đường kính AH cắt đường tròn (O) tại điểm thứ hai là K (K khác A). Tia KH cắt đường tròn (O) tại điểm thứ hai là Q. Tứ giác BHCQ là hình gì? Tại sao?d) Gọi giao điểm của HQ và BC là I. Chứng minh OI/MN > 1/4
a) Gọi G là trung điểm của BC
Ta có: ΔDBC vuông tại D(BD\(\perp\)AC tại D)
mà DG là đường trung tuyến ứng với cạnh huyền BC(G là trung điểm của BC)
nên \(DG=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(1)
Ta có: ΔEBC vuông tại E(CE\(\perp\)AB)
mà EG là đường trung tuyến ứng với cạnh huyền BC(G là trung điểm của BC)
nên \(EG=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(2)
Ta có: G là trung điểm của BC(gt)
nên \(BG=CG=\dfrac{BC}{2}\)(3)
Từ (1), (2) và (3) suy ra GB=GC=GE=GD
hay B,C,D,E cùng nằm trên một đường tròn(đpcm)
tam giác ABC đều các đường cao BD và CE cắt nhau tại H
chứng minh 4 điểm B E D C cùng thuộc 1 đường tròn. XÁc định tâm và bán kính của đường tròn ấy.
chứng minh điểm hH nằm trong đg tròn và điểm A nằm ngoài đg tròn và đi qua 4 điểm B E D C
- có \(\Delta BDC\)vuông tại D
nên D thuộc đường tròn đường kính BC ( 1)
có \(\Delta BEC\)vuông tại E
nên E thuộc đường tròn đường kính BC (2)
từ (1) và (2) suy ra đpcm
- gọi O là trung điểm của BC
có AO vuông góc với BC
dễ thấy OE > OH
nên H nằm trong đường tròn đường kính BC
dễ cm OA > OB
ên A nằm ngoài đường tròn đường kính BC
Cho tam giác ABC có hai đường cao BD va CE căt nhau tại H
a, Chứng minh bốn điểm A, D, H, E cùng nằm trên một đường tròn
b, Gọi (O) là đường tròn đi qua bốn điểm A, D, H, E và M là trung điểm của BC. Chứng minh ME là tiếp tuyên của (O)
a, Gọi O là trung điểm của AH thì OE = OA = OH = OD
b, HS tự làm