Cho hàm số y = 1 3 x 3 - 1 2 2 m + 4 x 2 + m 2 + 4 m + 3 x + 1
(m là tham số). Tìm m để
hàm số đạt cực đại tại x 0 = 2
A. m = 1
B. m = - 2
C. m = - 1
D. m = 2
Cho hàm số \(y=\dfrac{x^3}{3}-x^2+x+2019\): Mệnh đề nào đúng?
A: Hàm số đã cho đồng biến trên R
B: Hàm số đã cho nghịch biến trên(-\(\infty\);1)
C: Hàm số đã cho đồng biên trên (-\(\infty\);1) và nghịch biến trên (1;+\(\infty\))
D: Hàm số đã cho đồng biến trên (1;+\(\infty\)) và nghịch biên trên(-\(\infty\);1)
\(y'=x^2-2x+1=\left(x-1\right)^2\ge0\) ;\(\forall x\in R\)
\(\Rightarrow\) Hàm đồng biến trên R
Tính đạo hàm của hàm số sau: y = (x2 – x + 1)3.(x2 + x + 1)2
A: (x2 – x + 1)2(x2 + x + 1)
B: (x2 – x + 1)2(x2 + x + 1)[(2x + 3)(x + x2)]
C: (x2 – x + 1)2(x2 + x + 1)[3(2x - 1) + 2(2x + 1)]
D: Tất cả sai
Chọn D.
Đầu tiên sử dụng quy tắc nhân.
y’ = [(x2 – x + 1)]’(x2 + x + 1)2 + [(x2 x + 1)2]/(x2 – x + 1)3.
Sau đó sử dụng công thức u a '
y' = 3(x2 – x + 1)2(x2 – x + 1)’(x2 + x + 1) + 2(x2 + x + 1)(x2 + x + 1)’(x2 – x + 1)3
y’ = 3(x2 – x + 1)2(2x – 1) (x2 + x + 1)2 + 2(x2 + x + 1)(2x + 1)(x2 – x + 1)3
y’ = (x2 – x + 1)2(x2 + x + 1)[3(2x – 1)(x2 + x + 1) + 2(2x + 1)(x2 – x + 1)].
Bài 19: Cho f(x) = 2x + 3. Tính f(3); f(); f(– 2).
Bài 20: Cho g(x) = 15/x. Tính f(3); f(5); f(– 2).
Bài 21: Vẽ đồ thị các hàm số: y = 1/2x ; y = – 2x; y =3/2x
Bài 22: Vẽ đồ thị hàm số: y = 3x, kiểm tra điểm A(– 2; 6) có thuộc đồ thị hàm số trên không? Vì sao?
làm giúp em vs mn mai e thi r
Bài 19:
f(3)=2x3+3=9
f(-2)=-4+3=-1
Bài 20:
f(3)=15/3=5
f(5)=15/5=3
f(-2)=15/-2=-15/2
Bài 22:
Thay x=-2 vào y=3x, ta được:
y=3x(-2)=-6
Vậy: A(-2;6) thuộc đồ thị hàm số y=3x
Bài 19:
f(3)=2x3+3=9
f(-2)=-4+3=-1
Bài 20:
f(3)=15/3=5
f(5)=15/5=3
f(-2)=15/-2=-15/2
Bài 22:
Thay x=-2 vào y=3x, ta được:
y=3x(-2)=-6
Vậy: A(-2;6) thuộc đồ thị hàm số y=3x
Trong các hàm số y = x 4 - 2 x 2 - 3 , , y = 1 4 x 4 - 1 3 x 4 - 1 2 x 2 + x + 3 , y = x 2 - 1 - 4 , y = x 2 - 2 x - 3 có hàm số có 3 điểm cực trị?
A. 2
B. 4
C. 3
D. 1
Cho hàm số f(x) có đạo hàm f'(x) = \(x\left(x-1\right)^2\) \(x\in R\) . Số điểm cực trị của hàm số là
A:2
B:0
C:1
D:3
(kẻ bảng biến thiên cho dễ hiểu)
\(f'\left(x\right)=0\) có đúng 1 nghiệm bội lẻ \(x=0\) nên hàm có 1 cực trị
Bài 1 vẽ đồ thị của các hàm số sau
a)y=x
b)y=-3x
c)y=1,5x
d)y=2/3x
Bài 2 cho hàm số y=ax
Tìm a biết đồ thị qua điểm A(2:3)
Vẽ đồ thị trên
Bài 3 Vẽ đồ thị y=ax biết đồ thị qua điểm A(-2:1),Đồ thị của hàm số
trên có đi qua điểm B(10:-5) không ?
Bài 4 Những điểm nào sao đây thuộc đồ thị hàm số y-1/2x
A(5;-3) B(-3;4) C(2;1) D(-5;-5/2)
Bài 1: tìm đạo hàm của các hàm số sau
1. y=6x2 -\(\dfrac{4}{x}\)+1
2. y=\(\dfrac{2x+1}{-x+1}\)
3. y= \(\sqrt{x^2-3x+4}\)
4. y=\(\dfrac{\left(x^2-1\right)\left(x+3\right)}{x-4}\)
5. y=\(\dfrac{1}{2x^2-3x+5}\)
6. y=(x+1)\(\sqrt{x^2-1}\)
1.
\(y'=12x+\dfrac{4}{x^2}\)
2.
\(y'=\dfrac{3}{\left(-x+1\right)^2}\)
3.
\(y'=\dfrac{2x-3}{2\sqrt{x^2-3x+4}}\)
4.
\(y=\dfrac{x^3+3x^2-x-3}{x-4}\)
\(y'=\dfrac{\left(3x^2+6x-1\right)\left(x-4\right)-\left(x^3+3x^2-x-3\right)}{\left(x-4\right)^2}=\dfrac{2x^3-9x^2-24x+7}{\left(x-4\right)^2}\)
5.
\(y'=-\dfrac{4x-3}{\left(2x^2-3x+5\right)^2}\)
6.
\(y'=\sqrt{x^2-1}+\dfrac{x\left(x+1\right)}{\sqrt{x^2-1}}\)
Cho hàm số f(x) có đạo hàm f'(x) = \(x\left(1-x\right)^2\left(3-x\right)^3\left(x-2\right)^4\) . Điểm cực tiểu của hàm số đã cho là
A: x = 2
B: x = 3
C: x = 0
D: x = 1
Ai có bảng biến thiên thì vẽ cho dễ hiểu
Lời giải:
$f'(x)=0\Leftrightarrow x=0; x=1; x=3; x=2$.
BBT:
Từ BBT suy ra điểm cực tiêu là $x=0$
cho hàm số y=f(x)=ax.
a)Biết a=2 tính f(1);f(-2);f(-4).
b)Tìm a biết f(2)=4; vẽ đồ thị hàm số khi a =2;a=–3.
c) Trong các điểm sau điểm nào thuộc đồ thị của hàm số khi a = 2. A ( 1; 4) B (–1; –2) C (–2; 4) D (–2; –4)
a) a = 2
+ y = f(1) = 2.1 = 2
+ y = f(-2) = 2.(-2) = -4
+ y = f(-4) = 2.(-4) = -8
b) f(2) = 4
=> 4 = a.2
=> a = 2
( Vẽ đồ thị hàm số thì bạn tự vẽ được mà :)) Ở đây vẽ hơi khó )
c) Khi a = 2
=> Ta có đồ thị hàm số y = 2x
+ A(1;4)
=> xA = 1 ; yA = 4
Thế vào đồ thị hàm số y = 2x ta có :
4 = 2.1 ( vô lí )
=> A không thuộc đồ thị hàm số y = 2x
+ B = ( -1; -2 )
=> xB = -1 ; yB = -2
Thế vào đồ thị hàm số y = 2x ta có :
-2 = 2(-1) ( đúng )
=> B thuộc đồ thị hàm số y = 2x
+ C(-2; 4)
=> xC = -2 ; yC = 4
Thế vào đồ thị hàm số y = 2x ta có :
4 = 2(-2) ( vô lí )
=> C không thuộc đồ thị hàm số y = 2x
+ D(-2 ; -4 )
=> xD = -2 ; yD = -4
Thế vào đồ thị hàm số y = 2x ta có :
-4 = 2(-2) ( đúng )
=> D thuộc đồ thị hàm số y = 2x
Cho đồ thị hàm số y= f(x) = -2x
a) vẽ đồ thị hàm số trên
b) Tính : f(0) ; f (1) ; f( \(-\frac{3}{8}\)) ; f (\(-\frac{3}{2}\))
c) Tìm các giá trị cuaqr x biết y = 2 và y = \(-\frac{1}{4}\)