Với a và b là các số không âm thpar mãn a+b=2. Tìm Min của \(P=\sqrt{4a+1}+\sqrt{5b+1}\)
Cho a, b là 2 số thực không âm thỏa mãn a+b =2, tìm GTNN của P=\(\sqrt{4a+1}+\sqrt{5b+1}\)
giúp em với ạ
a,b,c là các số thực không âm thỏa mãn a+b+c=2. Tìm max và min của \(P=\sqrt{a+b^3c^3}+\sqrt{b+c^3a^3}+\sqrt{c+a^3b^3}\)
Biểu thức này có vẻ chỉ tìm được min chứ ko tìm được max:
Min:
\(P^2=a+b+c+a^3b^3+b^3c^3+c^3a^3+2\sqrt{\left(a+b^3c^3\right)\left(b+c^3a^3\right)}+2\sqrt{\left(a+b^3c^3\right)\left(c+a^3b^3\right)}+2\sqrt{\left(b+c^3a^3\right)\left(c+a^3b^3\right)}\)
\(P^2\ge a+b+c+2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ca}\ge a+b+c=2\)
\(\Rightarrow P\ge\sqrt{2}\)
\(P_{min}=\sqrt{2}\) khi \(\left(a;b;c\right)=\left(0;0;2\right)\) và các hoán vị
Cho a, b, c là các số thực không âm thỏa mãn \(a+b+c=4\)
tìm Min, max của biểu thức sau:\(A=\sqrt{2a+1}+\sqrt{3b+1}+\sqrt{4c+1}\)
helpppppppp
1) cho các số thực dương a,b thỏa mãn \(3a+b\le1\). Tìm Min của \(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\)
2) Với hai số thực a,b không âm thỏa mãn \(a^2+b^2=4\). Tìm Max \(M=\dfrac{ab}{a+b+2}\)
3) Cho x,y khác 0 thỏa mãn \(\left(x+y\right)xy=x^2+y^2-xy\). Tìm Max \(A=\dfrac{1}{x^3}+\dfrac{1}{y^3}\)
1) Áp dụng bất đẳng thức AM - GM và bất đẳng thức Schwarz:
\(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\ge\dfrac{1}{a}+\dfrac{1}{\dfrac{a+b}{2}}\ge\dfrac{4}{a+\dfrac{a+b}{2}}=\dfrac{8}{3a+b}\ge8\).
Đẳng thức xảy ra khi a = b = \(\dfrac{1}{4}\).
2.
\(4=a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow a+b\le2\sqrt{2}\)
Đồng thời \(\left(a+b\right)^2\ge a^2+b^2\Rightarrow a+b\ge2\)
\(M\le\dfrac{\left(a+b\right)^2}{4\left(a+b+2\right)}=\dfrac{x^2}{4\left(x+2\right)}\) (với \(x=a+b\Rightarrow2\le x\le2\sqrt{2}\) )
\(M\le\dfrac{x^2}{4\left(x+2\right)}-\sqrt{2}+1+\sqrt{2}-1\)
\(M\le\dfrac{\left(2\sqrt{2}-x\right)\left(x+4-2\sqrt{2}\right)}{4\left(x+2\right)}+\sqrt{2}-1\le\sqrt{2}-1\)
Dấu "=" xảy ra khi \(x=2\sqrt{2}\) hay \(a=b=\sqrt{2}\)
3. Chia 2 vế giả thiết cho \(x^2y^2\)
\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\ge\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\)
\(\Rightarrow0\le\dfrac{1}{x}+\dfrac{1}{y}\le4\)
\(A=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\right)=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\le16\)
Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)
cho số thực không âm thỏa mãn a+b+c=1
tìm Min và Max của \(P=\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c}\)
cho các số thực không âm a b c sao cho a+b+c=1
tìm min max P = \(\sqrt{a^2+2b^2}\) + \(\sqrt{b^2+2c^2}\) + \(\sqrt{c^2+2a^2}\)
thầy Lâm giúp em bài này với
Áp dụng BĐT Mincopxki:
\(P\ge\sqrt{\left(a+b+c\right)^2+2\left(a+b+c\right)^2}=\sqrt{3}\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)
Lại có do \(a;b;c\ge0\) nên:
\(a^2+2b^2\le a^2+2\sqrt{2}ab+2b^2=\left(a+\sqrt{2}b\right)^2\)
\(\Rightarrow\sqrt{a^2+2b^2}\le a+\sqrt{2}b\)
Tương tự và cộng lại:
\(\Rightarrow P\le\left(\sqrt{2}+1\right)\left(a+b+c\right)=\sqrt{2}+1\)
Dấu "=" xảy ra tại \(\left(a;b;c\right)=\left(1;0;0\right)\) và các hoán vị
\(a;b\ge0\Rightarrow ab\ge0\)
\(\Rightarrow a^2+2b^2+2\sqrt{2}ab\ge a^2+2b^2\)
Cho các số thực không âm a, b, c thay đổi thỏa mãn \(a^2+b^2+c^2=1\). Tìm GTLN và GTNN của biểu thức \(Q=\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)
Với các số thực không âm a,b thỏa mãn: a+b=1, tìm giá trị nhỏ nhất của biểu thức: \(P=\sqrt{1+3a}+\sqrt{1+2022b}\)
\(a,b \text{ là các số thực không âm sao cho }1\le a ,b\le2 \text{Tìm Min,Max} P=\sqrt{\dfrac{a+b}{2}}+\sqrt{\dfrac{b+c}{2}}+\sqrt{\dfrac{c+a}{2}}\)