Biết I = ∫ 1 3 x + 2 x d x = a + b ln c ,với a , b , c ∈ ℤ , c < 9. Tính tổng S = a + b + c .
A. S = 7.
B. S = 5.
C. S = 8.
D. S = 6.
Bài 60: Tìm x; biết
a/ I x+1 I + I x + 2 I + ..... + I x + 100 I = 101x
b/ I x+ 1/1.2 I + I x + 1/2.3 I + ..... + I x + 1/99.100 I = 100x
c/I I 2x-1 I-1/2 I = 3/2
d/I I 3/2x - 2 I -5/2 I = 3/4
e/I x2 + 2018 I 2019x -1 I I = x2 + 2018
f/ I (x + 1/2 ) I 2x - 3/4 II = 2x -3/4
Bài 1 : Tìm x€N ,biết
a,( x-2 ) -15 = 65
b,115 - 2 ×(x-3)=35
c,35+2×( x-3)=65
d,3×(x-5)-16=11
Bài 2 : Tìm x€ N ,biết
a,2^x-1=31
b,x^3-1=26
c,6^x-1+1=37
d,(x+2)^3-15^0=215
e,2×(x-9)^2=2
g,3×(x-5)^3=51
Mọi người giúp mình làm hai bài này với , ngày mai mình phải nộp bài rùi
Bài 1.
a, (x-2)-15=65
x-2=65+15
x-2=80
x=80+2
x=2
b, 115-2\(\times\)(x-3)=35
2\(\times\)(x-3)=115-35
2\(\times\)(x-3)=70
x-3=70:2
x-3=35
x=35+5
x=38
c, 35+2\(\times\)(x-3)=65
2\(\times\)(x-3)=65-35
2\(\times\)(x-3)=30
x-3=30:2
x-3=15
x=15+3
x=18
3\(\times\)(x-5)-16=11
3\(\times\)(x-5)=11+16
3\(\times\)(x-5)=27
x-5=27:3
x-5=9
x=9+5
x=14
Bài 2:
a, \(2^x-1=31\)
\(2^x=31-1\)
\(2^x=30\)
\(\Rightarrow\)Không có x thoả mãn điều kiện \(2^x=30\)
b, \(x^3-1=26\)
\(x^3=26+1\)
\(x^3=27\)
\(\Rightarrow x=3\) vì \(3^3=27\)
c, \(6^x-1+1=37\)
\(6^x-1=37-1\)
\(6^x-1=36\)
\(6^x=36+1\)
\(6^x=37\)
\(\Rightarrow\) Không có x thoả mãn điều kiện \(6^x=37\)
d, (x+2)\(^3\)-15\(^0\)=215
\(\left(x+2\right)^3-1=215\)
\(\left(x+2\right)^3=215+1\)
\(\left(x+2\right)^3=216\)
\(\left(x+2\right)^3=6^3\)
\(x+2=6\)
\(x=6-2\)
\(x=4\)
e, \(2\times\left(x-9\right)^2=2\)
\(\left(x-9\right)^2=2:2\)
\(\left(x-9\right)^2=1\)
\(\Rightarrow x-9=1\) vì \(1^2=1\)
x=1+9
x=10
g, \(3\times\left(x-5\right)^3=51\)
\(\left(x-5\right)^3=51:3\)
\(\left(x-5\right)^3=17\)
\(\Rightarrow\) Không có x thoả mãn điều kiện \(\left(x-5\right)^3=17\)
Nếu đúng thì tick cho mk nhé
Bài 1:
a)\(\left(x-2\right)-15=65\)
\(x-2=65+15\)
\(x-2=80\)
\(x=80+2\)
\(x=82\)
b)\(115-2\left(x-3\right)=35\)
\(2\left(x-3\right)=115-35\)
\(2\left(x-3\right)=80\)
\(x-3=80:2\)
\(x-3=40\)
\(x=40+3\)
c) \(35+2\left(x-3\right)=65\)
\(2\left(x-3\right)=65-35=30\)
\(x-3=30:2=15\)
\(x=15+3=18\)
d) \(3\left(x-5\right)-16=11\)
\(3\left(x-5\right)=11+16=27\)
\(x-5=27:3=9\)
\(x=9+5=14\)
Bài 2:
a) \(2^x-1=31\)
\(2^x=31+1=32\)
Vì \(2^5=32\Rightarrow x=5\)
b) \(x^3-1=26\)
\(x^3=26+1=27\)
Vì \(3^3=27\Rightarrow x=3\)
c)\(6^{x-1}+1=37\)
\(6^{x-1}=37-1=36\)
Vì \(6^6=36\Rightarrow x-1=6\Rightarrow x=6+1=7\)
d)\(\left(x+2\right)^3-15^0=215\)
\(\left(x+2\right)^3-1=215\)
\(\left(x+2\right)^3=215+1=216\)
Vì \(6^3=216\Rightarrow x+2=6\Rightarrow x=6-2=4\)
e)\(2\left(x-9\right)^2=2\)
\(\left(x-9\right)^2=2:2=1\)
Vì \(1^2=1\Rightarrow x-9=1\Rightarrow x=1+9=10\)
g) \(3\left(x-5\right)^3=51\)
\(\left(x-5\right)^3=51:3=17\)
Bài 1:
a)
\(\left(x-2\right)-15=65\)
\(x-2\) \(=65+15\)
\(x-2\) \(=\) \(80\)
\(x\) \(=80+2\)
\(x\) \(=82\)
b)
\(115-2\cdot\left(x-3\right)=35\)
\(2\cdot\left(x-3\right)=115-35\)
\(2\cdot\left(x-3\right)=80\)
\(x-3=80:2\)
\(x-3=40\)
\(x\) \(=40+3\)
\(x\) \(=43\)
c)
\(35+2\cdot\left(x-3\right)=65\)
\(2\cdot\left(x-3\right)=65-35\)
\(2\cdot\left(x-3\right)=30\)
\(x-3=30:2\)
\(x-3=15\)
\(x\) \(=15+3\)
\(x\) \(=18\)
d)
\(3\cdot\left(x-5\right)-16=11\)
\(3\cdot\left(x-5\right)\) \(=11+16\)
\(3\cdot\left(x-5\right)\) \(=27\)
\(x-5\) \(=27:3\)
\(x-5\) \(=9\)
\(x\) \(=9+5\)
\(x\) \(=14\)
Bài 2
a)
\(2^x-1=31\)
\(2^x\) \(=31+1\)
\(2^x\) \(=32\)
\(2^x\) \(=2^5\)
⇒ \(x=5\)
b)
\(x^3-1=26\)
\(x^3\) \(=26+1\)
\(x^3\) \(=27\)
\(x^3\) \(=3^3\)
⇒ \(x=3\)
c)
\(6^{x-1}+1=37\)
\(6^{x-1}\) \(=37-1\)
\(6^{x-1}\) \(=36\)
\(6^{x-1}\) \(=6^2\)
➞ \(x-1=2\)
\(x\) \(=2+1\)
\(x\) \(=3\)
d)
\(\left(x+2\right)^3-15^0=215\)
\(\left(x+2\right)^3-1=215\)
\(\left(x+2\right)^3=215+1\)
\(\left(x+2\right)^3=216\)
\(\left(x+2\right)^3=6^3\)
➞ \(x+2=6\)
\(x=6-2\)
\(x=4\)
e)
\(2\cdot\left(x-9\right)^2=2\)
\(\left(x-9\right)^2=2:2\)
\(\left(x-9\right)^2=1\)
\(\left(x-9\right)^2=1^2\)
➞ \(x-9=1\)
\(x=9+1\)
\(x=10\)
g)
\(3\cdot\left(x-5\right)^3=51\)
Câu hỏi này sai nhé bạn
Bài 1 : Tìm x để A . (\(\sqrt{x}+2\)) = -1 biết A = \(\dfrac{1}{x-4}\)
Bài 2 : Tìm các giá trị nguyên của x để B có giá trị nguyên . Biết B = \(\dfrac{3}{\sqrt{x}+2}\)
Bài 3 : a )CMR : C > 0 với mọi x \(\ne1\) b) Tìm x để C đạt GTLN ,GTNN
Biết C = \(\dfrac{2}{x+\sqrt{x}+1}\)
Bài 4 : Rút gọn biểu thức D = \(\left(\dfrac{2x+1}{\sqrt{x^3}-1}-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\right)\times\left(\dfrac{1+\sqrt{x^3}}{1+\sqrt{x}}-\sqrt{x}\right)\)với x \(\ge0\) , x\(\ne1\)
Tìm x để D = 3 , D = \(x-3\sqrt{x}+2\)
Bài 5 : Tìm x sao cho E < -1 . Biết E = \(\dfrac{-3x}{2x+4\sqrt{x}}\)
Bài 1:
A.\(\left(\sqrt{x}+2\right)\) = -1 (ĐK: \(x\ge0\)
\(\Leftrightarrow\dfrac{1}{x-4}\left(\sqrt{x}+2\right)=-1\)
\(\Leftrightarrow\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=-1\)
\(\Leftrightarrow\dfrac{1}{\sqrt{x}-2}=-1\)
\(\Leftrightarrow\sqrt{x}-2=-1\)
\(\Leftrightarrow\sqrt{x}=1\\ \Leftrightarrow x=1\left(TM\right)\)
Vậy x = 1
Bài 2: ĐK: \(x\ge0\)
Để \(B\in Z\Leftrightarrow\dfrac{3}{\sqrt{x}+2}\in Z\Leftrightarrow\sqrt{x}+2\inƯ\left(3\right)\)\(\Leftrightarrow\sqrt{x}+2\in\left\{\pm1,\pm3\right\}\)\(\Leftrightarrow x\in\left\{1\right\}\)
Bài 3:
a, Ta có: \(x+\sqrt{x}+1=x+2.\dfrac{1}{2}\sqrt{x}+\dfrac{1}{4}-\dfrac{1}{4}+1\\ =\left(\sqrt{x}+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)
Ta có: 2 > 0 và \(x+\sqrt{x}+1>0\Rightarrow C>0\) và \(x\ne1\)
b, ĐK: \(x\ge0,x\ne1\)
\(C=\dfrac{2}{x+\sqrt{x}+1}\)
Ta có: \(x+\sqrt{x}+1=\left(\sqrt{x}+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Ta có: \(\sqrt{x}\ge0\forall x\Rightarrow\sqrt{x}+\dfrac{1}{2}\ge\dfrac{1}{2}\forall x\Leftrightarrow\left(\sqrt{x}+\dfrac{1}{2}\right)^2\ge\dfrac{1}{4}\)
\(\Leftrightarrow\left(\sqrt{x}+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge1\Leftrightarrow\dfrac{2}{\left(\sqrt{x}+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le2\)
Dấu bằng xảy ra \(\Leftrightarrow\sqrt{x}+\dfrac{1}{2}=\dfrac{1}{2}\\ \Leftrightarrow x=0\left(TM\right)\)
Vậy MaxC = 2 khi x = 0
Còn cái GTNN chưa tính ra được, để sau nha
Bài 4: ĐK: \(x\ge0,x\ne1\)
\(D=\left(\dfrac{2x+1}{\sqrt{x^3-1}}-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\right)\left(\dfrac{1+\sqrt{x^3}}{1+\sqrt{x}}-\sqrt{x}\right)\)
\(=\left(\dfrac{2x+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\right)\left(\dfrac{\left(1+\sqrt{x}\right)\left(x-\sqrt{x}+1\right)}{1+\sqrt{x}}-\sqrt{x}\right)\)
\(=\left(\dfrac{2x+1-\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\left(x-\sqrt{x}+1-\sqrt{x}\right)\)
\(=\left(\dfrac{2x+1-x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\left(x-2\sqrt{x}+1\right)\)
\(=\left(\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\left(\sqrt{x}-1\right)^2\)
\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)}\)
\(=\sqrt{x}-1\)
\(D=3\Leftrightarrow\sqrt{x}-1=3\Leftrightarrow x=2\left(TM\right)\)
\(D=x-3\sqrt{x}+2\)
\(\Leftrightarrow\sqrt{x}-1=\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)-\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(1-\sqrt{x}+2\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(3-\sqrt{x}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(L\right)\\x=9\left(TM\right)\end{matrix}\right.\)
Bài 5: \(E< -1\Leftrightarrow\dfrac{-3x}{2x+4\sqrt{x}}< -1\)\(\Leftrightarrow\dfrac{-3x}{2x+4\sqrt{x}}+1< 0\Leftrightarrow\dfrac{-3x+2x+4\sqrt{x}}{2x+4\sqrt{x}}< 0\)
\(\Leftrightarrow\dfrac{4\sqrt{x}-x}{2x+4\sqrt{x}}< 0\Leftrightarrow\dfrac{\sqrt{x}\left(4-\sqrt{x}\right)}{2x+4\sqrt{x}}< 0\)
Ta có: \(\sqrt{x}>0\Leftrightarrow x>0\Leftrightarrow2x+4\sqrt{x}>0\) mà \(\dfrac{\sqrt{x}\left(4-\sqrt{x}\right)}{2x+4\sqrt{x}}< 0\)\(\Rightarrow\sqrt{x}\left(4-\sqrt{x}\right)< 0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\sqrt{x}< 0\left(L\right)\\4-\sqrt{x}>0\end{matrix}\right.\\\left\{{}\begin{matrix}\sqrt{x}>0\\4-\sqrt{x}< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x< 16,x\ne0\\\left\{{}\begin{matrix}x>0\\x< 16\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x< 16,x\ne0\\0< x< 16\end{matrix}\right.\)
Tìm x Biết :
a , 2/3 +1/3: x = 3/5
b , (2x / 3 ) : ( - 10) = 2/5
c , I 2x -1I +1 =4
d , 8- I 1-3x I =3
e , (x+7) ^3 = -125
a) \(\frac{2}{3}+\frac{1}{3}:x=\frac{3}{5}\)
\(\frac{1}{3}:x=\frac{3}{5}-\frac{2}{3}=\frac{9}{15}-\frac{10}{15}=\frac{-1}{15}\)
\(x=\frac{-1}{15}.\frac{1}{3}\)
\(x=\frac{-1}{45}\)
Vậy x = \(\frac{-1}{45}\)
c) \(\left|2x-1\right|+1=4\)
\(\left|2x-1\right|=4-1=3\)
2x-1 = 3 ; -3
TH1: 2.x - 1 = 3
2.x = 3 + 1 = 4
x = 4 : 2 = 2
TH2: 2.x - 1 = -3
2.x = -3 + 1 = -2
x = -2 : 2 = -1
Vậy x \(\in\){ 2 ; -1 }
Ngại làm ấn máy ==
Bài 7. Tìm x, y thuộc Z biết :
1/ x.(x + 7) = 0
2/ (x + 12).(x-3) = 0
3/ (-x + 5).(3 – x ) = 0
4/ x.(2 + x).( 7 – x) = 0
5/ (x - 1).(x +2).(-x -3) = 0
6/ ( x - 3). ( 2y + 1 ) = 7 ;
7/ ( 2x + 1).( 3y – 2) = -55.
Bài 8. Tìm x, y, z
Z biết : x – y = -9; y – z = -10; z + x = 11.
Bài 9. Tìm số nguyên a, b, c,d biết rằng:
a) a + b = - 11
b + c = 3
c + a = - 2
b) a + b + c + d = 1
a + c + d = 2
a + b + d = 3
a + b + c = 4
Bài 10-a: Cho x 1 + x 2 + x 3 + x 4 + ................ + x 49 + x 50 + x 51 = 0
và x 1 + x 2 = x 3 + x 4 = x 5 + x 6 = ..... = x 47 + x 48 = x 49 + x 50 = x 50 + x 51 = 1. Tính x 50?
Bài 10-b :
a) xy – 3x = -19 ;
b) 3x + 4y – xy = 16.
c) (x - 3). (y + 5) = -17
d) (x + 1). (xy – 2) = 11
e) xy - 7x + y = -22
f) xy - 3x + y = -20
g) xy - 5y - 2x= -41
Tập xác định của phương trình
Rút gọn thừa số chung
Giải phương trình
Biệt thức
Biệt thức
Nghiệm
Lời giải thu được
Bài 2: Tìm |x| biết
a) x = \(\dfrac{-3}{-11}\)
Bài 3: Tìm x biết
a) |4 (x-1)| = 12
b) |2x +1| - 5 = 10
c) |2,5 - x| - 1,3 = 0
d) -|1,4 - x| - 2 = 0
e) |x - 2| = x
f) 2|2x - 3| = \(\dfrac{1}{2}\)
Bài 2 :
a, x = \(\dfrac{-3}{-11}\) => x =\(\dfrac{3}{11}\)
=>| x | = \(\dfrac{3}{11}\)
=> x= \(\dfrac{3}{11}\) hoặc x = \(\dfrac{-3}{11}\)
Bài 3 :
a, | 4.(x-1)| =12
=> 4.(x-1)=12 hoặc 4.(x-1)=-12
\(\left[{}\begin{matrix}4.\left(x-1\right)=12\\4.\left(x-1\right)=-12\end{matrix}\right.=>\left[{}\begin{matrix}4x-4=12\\4x-4=-12\end{matrix}\right.=>\left[{}\begin{matrix}4x=16\\4x=-8\end{matrix}\right.=>\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)
Vậy x = 4 hoặc x = -2
b,|2x+1|-5 =10
|2x+1|=15
=2x+1=15 hoặc 2x+=-15
+) 2x+1=15 = > 2x = 14 = > x =7
+)2x+1=-15 => 2x= -16 => x = -8
Vậy x=7 hoặc x = -8
c,|2,5-x|-1,3=0
|2,5-x|= 1,3
=>2,5 -x = 1,3 hoặc 2,5 - x = -1,3
+)2,5 - x = 1,3 => x = 1,2
+)2,5-x = -1,3 => x=3,8
Vậy x = 1,2 hoặc x = 3,8
d,-|1,4 - x | - 2 = 0
-|1,4-x|=2
=> -1,4+x = 2 hoặc -1,4+x = -2
+) -1,4+x= 2 => x = 3,4
+)-1,4+x= -2 => x = 0,6
Vậy x = 3,4 hoặc x = 0 ,6
e,| x - 2 | = x
=> x -2 = x hoặc x - 2 = -x
+) x- 2 = x => x-x = -2 => 0 = -2 ( vô lí )
+) x -2 = -x => x+x=2 => 2x =2 => x= 1
Vậy x = 1
f, 2.|2x-3| = \(\dfrac{1}{2}\)
=> |2x-3|= \(\dfrac{1}{4}\)
=>2x-3=\(\dfrac{1}{4}\) hoặc 2x-3=\(\dfrac{-1}{4}\)
+) 2x - 3 = \(\dfrac{1}{4}\)=> 2x= \(\dfrac{13}{4}\)=> x = \(\dfrac{13}{8}\)
+) 2x - 3 = \(\dfrac{-1}{4}\)=> 2x=\(\dfrac{11}{4}\)=> x = \(\dfrac{11}{8}\)
Vậy x=\(\dfrac{13}{8}\) hoặc x=\(\dfrac{11}{8}\)
Bài 1 : Tìm x biết
b) 1/2 . ( 4/5 -3/2 ) + x = 5 . (x - 1/3)
c) 2.( x-5) -3 . (x + 7) = 14
d) -8. / x -3/ = - 32
e) -90 :/ x+3/4 / = -45
b)
\(\dfrac{1}{2}\left(\dfrac{4}{5}-\dfrac{3}{2}\right)+x=5\left(x-\dfrac{1}{3}\right)\)
=> \(-\dfrac{7}{20}+x=5x-\dfrac{5}{3}\)
=> \(\dfrac{79}{60}=4x\)
=> \(\dfrac{79}{240}=x\)
Vậy \(\dfrac{79}{240}=x\)
c)
\(2\left(x-5\right)-3\left(x+7\right)=14\)
=> \(2x-10-3x-21=14\)
=> \(-x-31=14\)
=> \(-x=45\)
=> x = -45
Vậy x là -45
d)
-8 . |x - 3| = -32
=> |x - 3| = 4
=> \(\left\{{}\begin{matrix}x-3=4\\x-3=-4\end{matrix}\right.\)
=> x = 7 và x = -1
Vậy x \(\in\left\{-1;7\right\}\)
Bài 9 : Tìm x, biết :
a, ( x-2 ) ( x-3 ) + ( x-2 ) - 1 = 0
b, ( x+2 )^2 - 2x ( 2x + 3 ) = ( x+1 )^2
c, 6x^3 + x^2 = 2x
d, x^8 - x^5 + x^2 - x + 1 = 0
Giúp mk vs ạ mk đang cần gấp ạ
Bài 9 : Tìm x, biết :
a, (x - 2)(x - 3) + (x - 2) - 1 = 0
\(\Leftrightarrow\left(x-2\right)\left(x-3+1\right)-1=0\)
\(\Leftrightarrow\left(x-2\right)^2-1=0\)
\(\Leftrightarrow\left(x-2+1\right)\left(x-2-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
Vậy x ={1; 3}
b, (x + 2)2 - 2x(2x + 3) = (x + 1)2
\(\Leftrightarrow\left(x+2\right)^2-\left(x+1\right)^2-2x\left(2x+3\right)=0\)
\(\Leftrightarrow\left(x+2+x+1\right)\left(x+2-x-1\right)-2x\left(2x+3\right)=0\)
\(\Leftrightarrow2x+3-2x\left(2x+3\right)=0\)
\(\Leftrightarrow\left(2x+3\right)\left(1-2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+3=0\\1-2x=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{3}{2}\\x=\frac{1}{2}\end{matrix}\right.\)
Vậy \(x=\left\{-\frac{3}{2};\frac{1}{2}\right\}\)
c, 6x3 + x2 = 2x
\(\Leftrightarrow6x^3+x^2-2x=0\)
\(\Leftrightarrow x\left(6x^2+x-2\right)=0\)
\(\Leftrightarrow x\left(6x^2+4x-3x-2\right)=0\)
\(\Leftrightarrow x\left[2x\left(3x+2\right)-\left(3x+2\right)\right]=0\)
\(\Leftrightarrow x\left(3x+2\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\3x+2=0\\2x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\frac{2}{3}\\x=\frac{1}{2}\end{matrix}\right.\)
Vậy \(x=\left\{0;-\frac{2}{3};\frac{1}{2}\right\}\)
Bài 1. Thực hiện phép tính (Tính nhanh nếu có thể ) 1) 347.22 - 22. ( 216 + 184 ) : 8; 2) 132 - [116 - (132 - 128 )2] 3) 16 :{400 : [200 - ( 37 + 46. 3 )]}; 4) {184 : [96 - 124 : 31 ] - 2 }. 3651; 5) 46 - [ (16 + 71. 4 ) : 15 ]} - 2; 6) 33.18 + 72.42 - 41.18 7) ( 56. 46 – 25. 23 ) : 23; 8) ( 28. 54 + 56. 36 ) : 21 : 2; 9) ( 76. 34 - 19. 64 ) : (38. 9); 10) ( 2+ 4 + 6 +.. + 100).(36.333-108. 111) ; 11) ( 5. 411- 3.165 ): 410 ; 12)
Bài 2. Tính: A= [(- 8 ) + ( - 7 ) ] + ( -10); B = - ( - 299 ) + ( - 219 ) + ( -401 ) + 12 C = 555 + ( - 100) + ( -80) + ; D = + ( - 40 ) + 3150 + ( - 307) E= 98.42 - {50.[(18 - 23): 2 + 32 ]}; F = - 80 - [ - 130 - ( 12 - 4 )2] + 20080 G = 1000 + ( - 670 ) + 297 + (- 330); H = 1024 : 24 + 140 : ( 38 + 25) - 723 : 721 I = ; K = 219 +573 + 381 - 173 L = 36. 33 - 105. 11 + 22. 15; N = 160 - ( 2 3.52 - 6. 25 ) O = (44. 52. 60 ) : ( 11. 13.15 ); P = (217 +154). ( 3 19 - 217 ). ( 24 - 42) Q = 100 + 98 + 96 +... + 4 +2 - 97 - 95 -... - 3 - 1
Bài 3. Tìm x N biết: a) 280 - ( x - 140 ) : 35 = 270; b) (190 - 2x ) : 35 - 32 = 16; c) 720 : [ 41 - ( 2x - 5 ) ] = 23.5 d) ( x : 23 + 45 ). 37 - 22 = 24. 105; e) ( 3x - 4 ). ( x - 1 )3 = 0; f) 22x-1 : 4 = 83 g) x17 = x; h) ( x - 5 )4 = ( x - 5 )6 ; i) ( x + 2 ) 5 = 210 ; k ) 1 + 2 + 3 +... + x = 78 l) ( 3.x – 24). 73 = 2.74; n) 5x : 52 = 125; m) ( x + 1) 2 = ( x + 1)0 ; o) ( 2 + x ) + ( 4 + x ) + ( 6 + x ) +... + ( 52 + x ) = 780 ; p) 70 x, 80 x và x > 8 q) x 12, x 25, x 30 và 0 < x < 500
Bài 4. Tìm x Z biết: a) ( - x + 31 ) - 39 = - 69 ; b) - 121 - ( - 35 - x ) = 50; c) 17 + x - ( 352 - 400 ) = - 32 d) 2130 - ( x + 130 ) + 72 = - 64; e) ; f) ; g) h) ; i) ( x - 2 ) - ( -8 ) = - 137; k) 15-(- x + 18) = - 24 l) 12 - = -19; m) 10 -
Bài 5. Tìm n N biết: a) 8 ( n - 2 ); b) ( 2.n +1 ) ( 6 - n ); c) 3.n ( n - 1 ); d) ( 3.n + 5) ( 2.n +1)
Bài 6. Tìm x, yN để : a) ( x + 22 ) ( x + 1); b) ( 2x + 23 ) B ( x - 1); c) ( 3x + 1 ) ( 2x - 1) d) ( x - 2 ) ( 2y + 1 ) = 17; e ) xy + x + 2y = 5
Bài 7. Tìm các cặp số nguyên x, y biết a) ( x - 1 ) ( y + 2 ) = 7; b) x. ( y - 3 ) = - 12; c) xy - 3x - y = 0 d) xy + 2x + 2 y = -16
Bài 8. Bỏ dấu ngoặc rồi rút gọn biểu thức a) - ( - a + c - d ) - ( c - a + d ); b) - ( a + b - c + d ) + ( a - b - c -d ) c) a( b - c - d ) - a ( b + c - d ); d*) (a+ b).( c + d) - ( a + d ) ( b + c ) e*)( a + b ) ( c - d ) - ( a - b )(c + d); f*) ( a + b ) 2 - ( a - b ) 2
Bài 1 : Tìm GTLN, GTNN :
a, A= x-|x|
b, B= \(\dfrac{1}{\left|x-2\right|+3}\)
c, C= \(\dfrac{x-2}{\left|x\right|}\)
d, D=|x+5|+2-x
Bài 2 : Tìm x thuộc Q, biết :
a,\(\left|x+\dfrac{4}{15}\right|-\left|-3,75\right|=-\left|-2.15\right|\)
b,|x-1|=x-1
c,|x-1|+3x=1
d,2.|x|+3.|1-x|-5.|x-3|=0
B=\(\dfrac{1}{\left|x-2\right|+3}\)
do \(\left|x-2\right|\ge0\forall x\)
=> \(\left|x-2\right|+3\ge3\)
=> \(\dfrac{1}{\left|x-2\right|+3}\le\dfrac{1}{3}\)
=> B \(\le\dfrac{1}{3}\)
GTLN của B =\(\dfrac{1}{3}\)
khi x-2=0
=> x=2
vậy GTLN của A=\(\dfrac{1}{3}\) khi x=2