Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 6 2017 lúc 17:38

Theo giả thuyêt ta có:

Chọn D

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
12 tháng 1 2019 lúc 16:18

Theo đầu bài ta có:

Đề kiểm tra 45 phút Đại số 11 Chương 4 có đáp án (Đề 1)

Chọn C.

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
21 tháng 9 2023 lúc 21:30

a)    Ta có: \({u_3} = {u_1}.{q^2} \Leftrightarrow \left( {\frac{{27}}{4}} \right) = 3.{q^2} \Leftrightarrow q = \frac{3}{2}\)

Năm số hạng đầu của cấp số nhân: \(3;\frac{9}{2};\frac{{27}}{4};\frac{{81}}{8};\frac{{243}}{{16}}\)

b)    Tổng 10 số hạng đầu:

\({S_n} = \frac{{{u_1}\left( {1 - {q^n}} \right)}}{{1 - q}} = \frac{{3\left( {1 - {{\left( {\frac{3}{2}} \right)}^{10}}} \right)}}{{1 - \frac{3}{2}}} = \frac{{3.\frac{{ - 58025}}{{1024}}}}{{1 - \frac{3}{2}}} = \frac{{ - 174075}}{{1024}}.\left( { - 2} \right) = \frac{{174075}}{{512}}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 11 2017 lúc 12:36

Đặng Hồ Uyên Thục
Xem chi tiết
Mai Nguyên Khang
21 tháng 4 2016 lúc 11:24

Theo giả thiết ta có :

               \(u_1+u_2=u_1+\frac{1}{4}\left(u_1\right)=24\)

             \(\Rightarrow u_1+\frac{1}{4}u_1^2-24=0\)

             \(\Leftrightarrow u_1=-12\) V \(u_1=8\)

Vậy có 2 cấp số nhân tương ứng là : 8,16,32,128 hoặc -12,36,-108,-972

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 11 2017 lúc 3:52

Kí hiệu u1,u2,u3,u4,u5 là các số hạng của cấp số nhân

Ta có :

Đáp án C

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
31 tháng 7 2019 lúc 15:17

Đáp án C

Em có:  S = 1. q n − 1 q − 1 = q n − 1 q − 1 .

Vì cấp số nhân mới tạo thành bằng cách thay đổi mỗi số hạng của cấp số nhân ban đầu thành nghịch đảo của nó nên cấp số nhân mới sẽ có công bội là  1 q .

Gọi S' là tổng mới của cấp số nhân mới.

Em có:  S ' = 1 q n − 1 1 q − 1 = 1 − q n q n . 1 − q q = 1 − q n 1 − q . 1 q n − 1 = S q n − 1 .

Vậy tổng của cấp số nhân mới là:  S q n − 1 .

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
21 tháng 9 2023 lúc 23:38

Ta có: \({S_n} = \frac{{5\left( {1 - {2^n}} \right)}}{{1 - 2}} =  - 5 + 5 \times {2^n}\;\)

 \(\begin{array}{l}5115 =  - 5 + {5.2^n}\\ \Leftrightarrow {2^n} = 1024 = 2.\\ \Rightarrow n = 10.\end{array}\)

Vậy phải lấy tổng 10 số hạng đầu. 

Baoupin1232
Xem chi tiết