Cho một cấp số nhân có n số hạng. Số hạng đầu tiên là 1, công bội là q và tổng là S. Trong đó q và S đều khác 0. Tổng các số hạng của cấp số nhân mới được thành bằng cách thay đổi mỗi số hạng của cấp số nhân ban đầu bằng nghịch đảo của nó là:
A. 1 S .
B. 1 q n . S .
C. S q n − 1 .
D. q n S .
Cho cấp số nhân u n có tổng n số hạng đầu tiên là S n = 5 n − 1 , n = 1 , 2 , 3 ... Tìm số hạng đầu u 1 và công bội q của cấp số nhân đó.
A. u 1 = 5 , q = 6
B. u 1 = 4 , q = 5
C. u 1 = 5 , q = 4
D. u 1 = 6 , q = 5
Cho cấp số nhân u n có số hạng đầu u 1 = 6 và công bội q = 2 . Số hạng thứ tư của cấp số nhân đó bằng
A. 24
B. 96
C. 12
D. 48
Tính tổng 10 số hạng đầu tiên của cấp số nhân u n , biết u 1 = − 3 và công bội q = − 2.
A. S 10 = − 1023
B. S 10 = 1025
C. S 10 = − 1025
D. S 10 = 1023
Cho cấp số nhân u n với u 1 = 1 , công bội q = 2 và cấp số cộng v n có v 1 = 2 công sai d = 2. Hỏi có tất cả bao nhiêu số có mặt đồng thời trong 1000 số hạng đầu tiên của cả hai cấp số cộng nói trên?
A. 9
B. 10
C. 11
D. 12
Một cấp số nhân có số hạng đầu u 1 = 3 , công bội q = 2 . Biết S n = 765 . Tìm n?
A. 7
B. 6
C. 8
D. 9
Một cấp số nhân có số hạng đầu u 1 = 3 , công bội q=2. Biết S n = 765 . Tìm n?
A. n = 7
B. n = 6
C. n = 8
D. n = 9
Một cấp số nhân có số hạng đầu u 1 = 3 , công bội q = 2. Biết S n = 765. Tìm n.
A. n = 7
B. n = 6
C. n = 8
D. n = 9
Một cấp số nhân có số hạng đầu u 1 = 3 , công bội q = 2. Biết S n = 765 . Tìm n.
A. n = 9
B. n = 6
C. n = 8
D. n = 7