Ta có: \({S_n} = \frac{{5\left( {1 - {2^n}} \right)}}{{1 - 2}} = - 5 + 5 \times {2^n}\;\)
\(\begin{array}{l}5115 = - 5 + {5.2^n}\\ \Leftrightarrow {2^n} = 1024 = 2.\\ \Rightarrow n = 10.\end{array}\)
Vậy phải lấy tổng 10 số hạng đầu.
Ta có: \({S_n} = \frac{{5\left( {1 - {2^n}} \right)}}{{1 - 2}} = - 5 + 5 \times {2^n}\;\)
\(\begin{array}{l}5115 = - 5 + {5.2^n}\\ \Leftrightarrow {2^n} = 1024 = 2.\\ \Rightarrow n = 10.\end{array}\)
Vậy phải lấy tổng 10 số hạng đầu.
Nếu cấp số nhân có công bội q = 1 thì tổng n số hạng đầu \(S_n\) của nó bằng bao nhiêu?
Viết năm số hạng đầu của mỗi dãy số \(\left( {{u_n}} \right)\) sau và xem nó có phải là cấp số nhân không. Nếu nó là cấp số nhân, hãy tìm công bội q và viết công thức số hạng tổng quát của nó dưới dạng \({u_n} = {u_1}.{q^{n - 1}}\)
a) \({u_n} = 5n\)
b) \({u_n} = {5^n}\)
c) \({u_1} = 1,\;{u_n} = n.{u_{n - 1}}\),
d) \({u_1} = 1,\;{u_n} = 5.{u_{n - 1}}\)
Một cấp số nhân có số hạng thứ 6 bằng 96 và số hạng thứ 3 bằng 12. Tìm số hạng thứ 50 của cấp số nhân này.
Cho cấp số nhân \(\left( {{u_n}} \right)\) với số hạng đầu \({u_1} = a\) và công bội \(q \ne 1\)
Để tính tổng của n số hạng đầu\({S_n} = {u_1} + {u_2} + \ldots + {u_{n - 1}} + {u_n}\)
Thực hiện lần lượt các yêu cầu sau:
a) Biểu diễn mỗi số hạng trong tổng trên theo \({u_1}\) và q để được biểu thức tính tổng \({S_n}\) chỉ chứa \({u_1}\) và q.
b) Từ kết quả phần a, nhân cả hai vế với q để được biểu thức tính tích \(q.{S_n}\) chỉ chứa \({u_1}\) và \(q\).
c) Trừ từng vế hai đẳng thức nhận được ở cả a và b và giản ước các số hạng đồng dạng để tính \(\left( {1 - q} \right){S_n}\) theo \({u_1}\)và \(q\). Từ đó suy ra công thức tính \({S_n}\).
Cho dãy số \({u_n}\)với \({u_n} = {2.5^n}\). Chứng minh rằng dãy số này là một cấp số nhân. Xác định số hạng đầu và công bội của nó.
Xác định công bội, số hạng thứ 5, số hạng tổng quát và số hạng thứ 100 của mỗi cấp số nhân sau:
a) 1, 4, 16, …;
b) \(2, - \frac{1}{2},\frac{1}{8},\; \ldots \)
Cho cấp số nhân \(\left( {{u_n}} \right)\) với số hạng đầu \({u_1}\) và công bội \(q\)
a) Tính các số hạng \({u_2},{u_3},{u_4},{u_5}\) theo \({u_1}\) và \(q\).
b) Dự đoán công thức tính số hạng thứ n theo \({u_1}\) và \(q\).
Dãy số không đổi a,a, a,... có phải là một cấp số nhân không?
Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = {3.2^n}\)
a) Viết năm số hạng đầu của dãy số này.
b) Dự đoán hệ thức truy hồi liên hệ giữa \({u_n}\) và \({u_{n - 1}}\).