Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen thi huong giang
Xem chi tiết
Đỗ Đình Tuấn Anh
Xem chi tiết
Chi Khánh
Xem chi tiết
Chi Khánh
Xem chi tiết
Lê Duy Mạnh
Xem chi tiết
sumi yuri
6 tháng 1 2015 lúc 16:25

Bài 1: 

a) P=(a+5)(a+8) chia hết cho 2

Nếu a chẵn => a+8 chẵn=> a+8 chia hết cho 2 => (a+5)(a+8) chia hết cho 2

Nếu a lẽ => a+5 chẵn => a+5 chia hết cho 2 => (a+5)(a+8) chia hết cho 2

Vậy P luôn chia hết cho 2 với mọi a

b) Q= ab(a+b) chia hết cho 2

Nếu a chẵn => ab(a+b) chia hết cho 2

Nếu b chẵn => ab(a+b) chia hết cho 2

Nếu a và b đều lẽ => a+b chẵn => ab(a+b) chia hết cho 2

Vậy Q luôn chia hết cho 2 với mọi a và b

 

Nguyễn Minh Quang 123
10 tháng 7 2015 lúc 22:09

bài 3:n5- n= n(n-1)(n+1)(n2+1)=n(n-1)(n+1)(n2+5-4)=n(n-1)(n+1)(n-2)(n+2)+5n(n-1)(n+1).

Vì: n(n-1)(n+1)(n-2)(n+2) là 5 số nguyên liên tiếp thì chia hết cho 10                   (1)

ta lại có: n(n+1) là 2 số nguyên liên tiếp nên chia hết cho 2

=> 5n(n-1)n(n+1) chia hết cho 10                                                                     (2)

Từ (1) và (2) => n5- n chia hết cho 10

Nguyễn Đức Thắng
24 tháng 1 2016 lúc 15:26

a) a lẻ suy ra a+5 chia hết cho 2

a chẵn suy ra a+8 chia hết cho 2

bin sky
Xem chi tiết
Akai Haruma
22 tháng 7 2021 lúc 15:22

Lời giải:
a. Vì $p$ nguyên tố lớn hơn $3$ nên $p$ không chia hết cho $3$.

Nếu $p$ chia $3$ dư $2$, $p$ có dạng $p=3k+2$. 

$p+4=3k+6\vdots 3$. Mà $p+4>3$ nên không là số nguyên tố (trái đề)

Do đó $p$ chia $3$ dư $1$

Khi đó: $p+8=3k+1+8=3(k+3)$ chia hết cho $3$. Mà $p+8>3$ nên $p+8$ là hợp số (đpcm)

b.

$\overline{abcd}=1000a+100b+10c+d$

$=1000a+96b+8c+(d+2c+4b)$

$=8(125a+12b+c)+(d+2c+4b)$

Vì $8(125a+12b+c)\vdots 8; d+2c+4b\vdots 8$

$\Rightarrow \overline{abcd}\vdots 8$

Ta có đpcm.

Trần Thiên Kim
Xem chi tiết
Akai Haruma
20 tháng 7 2017 lúc 23:37

Lời giải

Cách giải đơn giản nhất là khai triển

\(3(a^8+b^8+c^8)\geq (a^3+b^3+c^3)(a^5+b^5+c^5)\)

\(\Leftrightarrow 2(a^8+b^8+c^8)\geq a^5(b^3+c^3)+b^5(c^3+a^3)+c^5(a^3+b^3)\)

\(\Leftrightarrow (a^3-b^3)(a^5-b^5)+(b^3-c^3)(b^5-c^5)+(c^3-a^3)(c^5-a^5)\geq 0(\star)\)

Xét \((a^3-b^3)(a^5-b^5)=(a-b)^2(a^2+b^2)(a^4+a^3b+a^2b^2+ab^3+b^4)\geq 0\) với mọi \(a,b>0\)

và tương tự với các biểu thức còn lại.

Suy ra BĐT \((\star)\) luôn đúng.

Ta có đpcm

Đây chính là một dạng của BĐT Chebyshev:

Với dãy số thực \(a_1\leq a_2\leq ....\leq a_n\) . Nếu tồn tại dãy số thực\(b_1\leq b_2\leq .... \leq b_n\) thì \(n(a_1b_1+a_2b_2+....+a_nb_n)\geq (a_1+a_2+...+a_n)(b_1+b_2+...+b_n)\)

Akai Haruma
21 tháng 7 2017 lúc 0:13

Câu 2:

Tương tự câu 1 thôi.

Do \(a+b=2\) nên bài toán tương đương: \(2(a^8+b^8)\geq (a^7+b^7)(a+b)\)

\(\Leftrightarrow a^8+b^8\geq a^7b+ab^7\Leftrightarrow (a^7-b^7)(a-b)\geq 0\)

\(\Leftrightarrow (a-b)^2(a^6+a^5b+....+ab^5+b^6)\geq 0(\star)\)

Xét \(Q=a^6+a^5b+a^4b^2+a^3b^3+a^2b^4+ab^5+b^6\)

\(Q=(a+b)(a^5+b^5)+a^2b^2(a^2+b^2+ab)\)

Dựa vào điều kiện \(a+b=2\) và biến đổi, ta thu được \(Q=16(2-ab)^2-8ab(2-ab)-a^3b^3\)

Đặt \(ab=t\Rightarrow Q=-t^3+24t^2-80t+64\)

\(\Leftrightarrow Q=(1-t)(t-8)^2+7t^2\)

Với mọi \(a,b\in\mathbb{R}\) ta luôn có \(ab\leq \frac{(a+b)^2}{4}\Rightarrow t\leq 1\). Do đó \(Q\geq 0\)

Kéo theo BĐT \((\star)\) luôn đúng, bài toán luôn đúng. Do đó ta có đpcm.

D O T | ☪ Alan Wa...
Xem chi tiết
Phùng Minh Quân
26 tháng 10 2019 lúc 5:39

Cần CM : \(a^{k+1}-a^k\ge a-1\)\(\left(k\inℕ\right)\) (1) 

\(\Leftrightarrow\)\(a^k\left(a-1\right)-\left(a-1\right)\ge0\)

\(\Leftrightarrow\)\(\left(a-1\right)\left(a^k-1\right)\ge0\)

\(\Leftrightarrow\)\(\left(a-1\right)^2\left(a^{k-1}-a^{k-2}+a^{k-3}-a^{k-4}+...+1\right)\ge0\) ( đúng ) 

=> (1) đúng 

Áp dụng vào bài toán,với k = 7 ta có \(\hept{\begin{cases}a^8-a^7\ge a-1\\b^8-b^7\ge a-1\end{cases}}\Rightarrow a^8+b^8-a^7-b^7\ge a+b-2=0\)

\(\Leftrightarrow\)\(a^8+b^8\ge a^7+b^7\)

Dấu "=" xảy ra khi \(a=b=1\)

Khách vãng lai đã xóa
Nguyễn Khang
26 tháng 10 2019 lúc 18:42

Thay b = 2 - a vào phân tích ta được:

VT - VP = 4 (a - 1)^2 (a^6 - 6 a^5 + 36 a^4 - 104 a^3 + 176 a^2 - 160 a + 64) 

Khách vãng lai đã xóa
Nguyễn Khang
26 tháng 10 2019 lúc 18:42

Ối nó ko hiện ảnh nên chị vào thống kê hỏi đáp của em xem nha!

Khách vãng lai đã xóa
Nguyễn Thanh Tùng
Xem chi tiết
Nguyễn Hoàng An
1 tháng 3 2017 lúc 21:10

a, Vì A có 3 chữ số tận cùng là 008 => A chia hết cho 8 (1)

A có tổng các chữ số là 12 chia hết cho 3 (2)

Từ (1) và (2) với (3,8)=1 => A chia hết cho 24

b, Vì A có chữ số tận cùng là 8 nên A không phải là số chính phương. 

Dương Tùng Lâm
31 tháng 12 2021 lúc 19:58

Onepiece23

Khách vãng lai đã xóa
Lê Phương Linh
Xem chi tiết
Nguyễn Ngọc Anh Minh
8 tháng 8 2023 lúc 9:03

a/

\(10^{33}⋮2;8⋮2\Rightarrow\left(10^{33}+8\right)⋮2\)

\(10^{33}+8=999...99+1+8=999...99+9\) (33 chữ số 9)

\(999...99+9⋮9\Rightarrow\left(10^{33}+8\right)⋮9\)

Mà 2 và 9 là 2 số nguyên tố cùng nhau

\(\Rightarrow\left(10^{33}+8\right)⋮2x9\Rightarrow\left(10^{33}+8\right)⋮18\)

b/

\(10^{10}⋮2;14⋮2\Rightarrow\left(10^{10}+14\right)⋮2\)

\(10^{10}+14=999..99+1+14=999...99+15⋮3\) (10 chữ số 9)

\(\Rightarrow\left(10^{10}+14\right)⋮3\)

2 và 3 là 2 số nguyên tố cùng nhau

\(\Rightarrow\left(10^{10}+14\right)⋮2x3\Rightarrow\left(10^{10}+14\right)⋮6\)

boi đz
8 tháng 8 2023 lúc 9:05

a) (1033 +8) ⋮ 18

=> Ta phải CM được (1033 +8) ⋮ 2; (1033 +8) ⋮ 9

+) 1033 +8 = \(\overline{...0}+8=\overline{........8}\)

Vì (1033 +8)  có chữ số tận cùng là chẵn => (1033 +8) ⋮ 2

+) (1033 +8) có tổng các chữ số = 9 =>  (1033 +8) ⋮ 9

CMR: (1033 +8) ⋮ 18

b) (1010 + 14) ⋮ 6

=> Ta phải Cm được (1010 + 14) ⋮2 ;(1010 + 14) ⋮ 3

+) (1010 + 14) = \(\overline{......00}+14=\overline{..........14}\)

Vì (1010 + 14) có chữ số tận cùng là số chẵn => (1010 + 14) ⋮ 2

+) Vì (1010 + 14) có tổng các chữ số = 6 => (1010 + 14) ⋮ 3

đã CMR: (1010 + 14) ⋮6

Nguyễn Đức Trí
8 tháng 8 2023 lúc 9:09

a) Ta có : 

\(\left(10^{33}+8\right)⋮9\left(1\right)\)

Ta lại có số tận cùng của \(\left(10^{33}+8\right)\) là 8 (số chẵn)

\(\Rightarrow\left(10^{33}+8\right)⋮2\left(2\right)\)

\(\left(1\right),\left(2\right)\text{​​}\Rightarrow\left(10^{33}+8\right)⋮\left(2.9\right)\)

\(\Rightarrow\left(10^{33}+8\right)⋮18\left(dpcm\right)\)

b) Ta có :

\(\left(10^{14}+14\right)⋮2\)

mà tổng các chữ số của \(\left(10^{14}+14\right)\) là \(1+1+4=6⋮3\)

\(\Rightarrow\left(10^{14}+14\right)⋮\left(2.3\right)\)

\(\Rightarrow\left(10^{14}+14\right)⋮6\left(dpcm\right)\)