Một hợp đựng 10 thẻ, đánh số từ 1 đến 10. Chọn ngẫu nhiên 3 thẻ. Gọi A là biến cố để tổng của 3 thẻ được chọn không vượt quá 8. Số phần tử của biến cố A là:
A.3
B.4.
C.5.
D.2.
Một hợp đựng 10 thẻ, đánh số từ 1 đến 10. Chọn ngẫu nhiên 3 thẻ. Gọi A là biến cố để tổng của 3 thẻ được chọn không vượt quá 8. Số phần tử của biến cố A là:
A. 3
B. 4
C. 5.
D. 2
Từ một hộp đựng 10 Thẻ được đánh số từ 1 đến 10 chọn ngẫu nhiên đồng thời hai thẻ Gọi A là biến cố tích số của 2 thẻ được chọn là số chẵn Tìm số phần tử của biến cố a
Tích của 2 thẻ là số chẵn khi có ít nhất một trong 2 thẻ là chẵn
Số cách chọn 2 thẻ từ 10 thẻ: \(C_{10}^2\)
Số cách chọn 2 thẻ đều là số lẻ: \(C_5^2\)
Số cách chọn có ít nhất 1 thẻ chẵn: \(C_{10}^2-C_5^2=35\)
Số phần tử của biến cố A là 35
Một hộp chứa 21 tấm thẻ cùng loại được đánh số từ 1 đến 21. Chọn ra ngẫu nhiên 1 thẻ từ hộp. Gọi \(A\) là biến cố “Số ghi trên thẻ được chọn chia hết cho 2”, \(B\) là biến cố “Số ghi trên thẻ được chọn chia hết cho 3”.
a) Hãy mô tả bằng lời biến cố \(AB\).
b) Hai biến cố \(A\) và \(B\) có độc lập không? Tại sao?
a)
Biến cố AB: Số ghi trên thẻ được chọn chia hết cho cả 2 và 3.
b) Hai biến cố A và B không độc lập.
Điều này xảy ra vì nếu một số chia hết cho 2 thì nó có thể chia hết cho 3 (ví dụ: số 6), và ngược lại, nếu một số chia hết cho 3 thì nó cũng có thể chia hết cho 2 (ví dụ: số 6). => Do đó, kết quả của biến cố A ảnh hưởng đến biến cố B và ngược lại, không đảm bảo tính độc lập giữa hai biến cố này.
$HaNa$
Từ một hộp chứa 10 cái thẻ, trong đó các thẻ đánh số 1, 2, 3, 4, 5 màu đỏ, thẻ đánh số 6 màu xanh và các thẻ đánh số 7, 8, 9, 10 màu trắng. Lấy ngẫu nhiên một thẻ.
a.Mô tả không gian mẫu.
b.Kí hiệu A, B, C là các biến cố sau:
A: "Lấy được thẻ màu đỏ"
B: "Lấy được thẻ màu trắng"
C: "Lấy được thẻ ghi số chắn".
Hãy biểu diễn các biến cố A, B, C bởi các tập hợp con tương ứng của không gian mẫu.
a. Không gian mẫu gồm 10 phần tử:
Ω = {1, 2, 3, …, 10}
b. A, B, C "là các biến cố".
+ A: "Lấy được thẻ màu đỏ"
⇒ A = {1, 2, 3, 4, 5}
+ B: "Lấy được thẻ màu trắng"
⇒ B = {7, 8, 9, 10}
+ C: "Lấy được thẻ ghi số chắn".
⇒ C = {2, 4, 6, 8, 10}
Có 100 tấm thẻ được đánh số từ 1 đến 100. Lấy ngẫu nhiên 5 thẻ. Tính số phần tử của biến cố: A: “ Số ghi trên các tấm thẻ được chọn là số chẵn”
A.
B.
C.
D.
Trong 100 tấm thẻ có 50 tấm được ghi các số chẵn, do đó
Chọn C.
Bài 11: Có 9 tấm thẻ đánh số từ 1 đến 9. Chọn ngẫu nhiên ra 3 tấm thẻ và xếp thành số
có 3 chữ số. Gọi A là biến cố :"số tạo thành là số chẵn". Tính số phần tử của biến cố A?
Bài 12: Một lớp có 7 học sinh giỏi, 15 học sinh khá và 8 học sinh trung bình. Giáo viên
chủ nhiệm chọn ngẫu nhiên ra 5 em tham gia trò chơi. Gọi A là biến cố “ có 2 học sinh
trung bình, 2 học sinh khá và 1 học sinh giỏi". Tính số phần tử của biến cố A?
Một hộp có 10 tấm thẻ giống nhau được đánh số lần lượt từ 1 đến 10. Chọn ngẫu nhiên cùng lúc 3 thẻ. Tính xác suất của biến cố “Tích các số ghi trên ba thẻ đó là số chẵn”.
Do các tấm thẻ giống nhau, nên lấy 3 tấm từ 10 tấm không quan tâm thứ tự có \(C_{10}^3 = 120\)cách, suy ra \(n\left( \Omega \right) = 120\)
Gọi A là biến cố “Tích các số ghi trên ba thẻ đó là số chẵn”
Để tích các số trên thẻ là số chẵn thì ít nhất có 1 thẻ là số chẵn
Để chọn ra 3 thẻ thuận lợi cho biến cố A ta có 3 khả năng
+) Khả năng 1: 3 thẻ chọn ra có 1 thẻ có số chẵn và 2 thẻ có số lẻ có \(5.C_5^2 = 50\) khả năng
+) Khả năng 2: 3 thẻ chọn ra có 2 thẻ có số chẵn và 1 thẻ có số lẻ có \(C_5^2.5 = 50\) khả năng
+) Khả năng 3: 3 thẻ chọn ra có đều là có số chắn có \(C_5^3 = 10\) khả năng
Suy ra \(n\left( A \right) = 50 + 50 + 10 = 110\)
Vậy xác suất của biến cố A là: \(P(A) = \frac{{110}}{{120}} = \frac{{11}}{{12}}\)
Một túi đựng các tấm thẻ được ghi số 9;12;15;21;24. Rút ngẫu nhiên một tấm thẻ trong túi. Chọn từ thích hợp ( chắc chắn, không thể, ngẫu nhiên) thay vào dấu “?” trong các câu sau:
- Biến cố A: “ Rút được thẻ ghi số chẵn” là biến cố …?...
- Biến cố B: “ Rút được thẻ ghi số chia hết cho 3” là biến cố ..?...
- Biến cố C: “ Rút được thẻ ghi số chia hết cho 10” là biến cố ..?...
Biến cố A là biến cố ngẫu nhiên vì các số ghi trên các tấm thẻ có cả số chẵn và số lẻ
Biến cố B là biến cố chắc chắn vì tất cả các tấm thẻ đều ghi số chia hết cho 3
Biến cố C là biến cố không thể vì các số ghi trên các tấm thẻ không có số nào chia hết cho 10.
Hộp thứ nhất chứa 3 tấm thẻ cùng loại được đánh số lần lượt từ 1 đến 3. Hộp thứ hai chứa 5 tấm thẻ cùng loại được đánh số lần lượt từ 1 đến 5. Lấy ra ngẫu nhiên từ mỗi hộp 1 thẻ. Gọi \(A\) là biến cố “Tổng các số ghi trên 2 thẻ bằng 6”, \(B\) là biến cố “Tích các số ghi trên 2 thẻ là số lẻ”.
a) Hãy viết tập hợp mô tả biến cố \(AB\) và tính \(P\left( {AB} \right)\).
b) Hãy tìm một biến cố khác rỗng và xung khắc với cả hai biến cố \(A\) và \(B\).
a) Tập hợp mô tả biến cố AB:
`AB: { (1, 5), (2, 4), (3, 3) }`
P(AB) = số phần tử trong AB / số phần tử trong không gian mẫu
`P(AB) = 3 / (3 * 5) = 3/15 = 1/5`
b) Một biến cố khác rỗng và xung khắc với cả hai biến cố A và B là biến cố "Tổng các số ghi trên 2 thẻ lớn hơn 6".
$HaNa$