Bài 1: Tìm hệ số lớn nhất trong khai triển (x+2)\(^{10}\)
helppp me
a.Tìm hệ số của số hạng chứa \(x^6\) trong khai triển \(\left(1+x^2\right)^{12}\)
b.Tìm hệ số của số hạng chứa \(x^6\) trong khai triển \(\left(2x-1\right)^{10}\)
HELP ME!
Tìm hệ số lớn nhất trong khai triển nhị thức Newton của \(\left(\dfrac{1}{2}+\dfrac{x}{3}\right)^{14}\)
Cho khai triển 1 + x n 1 + 3 x = a 0 + a 1 x + a 2 x + . . . + a n + 1 x n + 1 . Tìm hệ số lớn nhất trong khai triển trên biết rằng tổng các hệ số của khai triển đó bằng 2 20 .
A. 277134
B. 189618
C. 48620
D. 179894
Tìm hệ số lớn nhất trong khai triển nhị thức Newton của P ( x ) = 1 + 2 x 12
A. 126700.
B. 126730.
C. 126720.
D. 126710.
Đáp án C
Ta có P ( x ) = 1 + 2 x 12 = ∑ k = 0 12 C 12 k 1 12 - k = ∑ k = 0 12 C 12 k 2 k x k .
Gọi a k = C 12 K 2 K , 0 ≤ k ≤ 12 , k ∈ ℕ là hệ số lớn nhất trong khai triển.
Suy ra a k ≥ a k + 1 a k ≥ a k - 1 ⇔ c 12 k 2 k ≥ c 12 k + 1 2 k + 1 c 12 k 2 k ≥ c 12 k - 1 2 k - 1
⇔ 12 ! 12 - k ! k ! . 2 k ≥ 12 ! 11 - k ! k + 1 ! . 2 k + 1 12 ! 12 - k ! k ! . 2 k ≥ 12 ! 13 - k ! k + 1 ! . 2 k - 1 ⇔ 1 12 - k ≥ 2 k + 1 1 k ≥ 1 2 13 - k
Vậy hệ số lớn nhất trong khai triển đã cho là a 8 = 2 8 c 12 8 = 126720 .
Bài 1:
a.Tìm hệ số của số hạng chứa \(x^6\) trong khai triển \(\left(1+x^2\right)^{12}\)
b.Tìm hệ số của số hạng chứa \(x^6\) trong khai triển \(\left(2x-1\right)^{10}\)
Giúp mk vs ạ!!!
Cho khai triển P x = 1 + 2 x 12 = a 0 + a 1 x + ... + a 12 x 12 . Tìm hệ số a k 0 ≤ k ≤ 12 lớn nhất trong khai triển trên.
A. C 12 8 2 8 .
B. C 12 9 2 9 .
C. C 12 10 2 10 .
D. 1 + C 12 8 2 8 .
Cho khai triển P x = 1 + 2 x 12 = a 0 + a 1 x + . . . + a 12 x 12 . Tìm hệ số a k ( 0 ≤ k ≤ 12 ) lớn nhất trong khai triển trên
A. C 12 8 2 8
B. C 12 9 2 9
C. C 12 10 2 10
D. 1 + C 12 8 2 8
Tìm hệ số lớn nhất trong các hệ số của các số hạng khi khai triển nhị thức sau thành đa thức (1+x)101
Giúp với ạ
Hệ số lớn nhất sẽ tương ứng với số hạng đứng chính giữa
=>Hệ số lớn nhất là \(C^{51}_{101}\)
Tìm hệ số của số hạng chứa x^10 trong khai triển: (x^2-x^3+1)^10
\(\left(x^2-x^3+1\right)^{10}=\sum\limits^{10}_{k=0}C_{10}^k\left(x^2-x^3\right)^k=\sum\limits^{10}_{k=0}C_{10}^k\sum\limits^k_{i=0}C_k^i.\left(x^2\right)^i.\left(-x^3\right)^{k-i}\)
\(=\sum\limits^{10}_{k=0}\sum\limits^k_{i=0}C_{10}^k.C_k^i.\left(-1\right)^{k-i}.x^{3k-i}\)
Số hạng chứa \(x^{10}\) thỏa mãn:
\(\left\{{}\begin{matrix}0\le k\le0\\0\le i\le k\\3k-i=10\end{matrix}\right.\) \(\Rightarrow\left(i;k\right)=\left(2;4\right);\left(5;5\right)\)
\(\Rightarrow\) Hệ số: \(C_{10}^4.C_4^2+C_{10}^5.C_5^5=...\)