2xy+x²+y²-16
cho (x+2y)(x^2-2xy+y^2)=0 và (x-2y)(x^2+2xy+4y^2)=16 tìm x và y
cho (x+2y)(x^2-2xy+y^2) = 0 và (x-2y)(x^2+2xy+y^2) = 16 . Tính A=(xy)^2016
kinh nhờ học nhà thầy Khánh à ?
mấy bạn biết thầy Khánh ak thầy mk đó
tìm các cặp số x,y thỏa mãn điều kiện(x,y thuộc N)
a) 2xy-6x+y=13
b) 2xy+2y-x=16
a) 2xy-6x+y=13
<=>2x(y-3)+(y-3)=10
<=>(y-3)(2x+1)=10
=>y-3 và 2x+1 thuộc Ư(10)
=>Ư(10)={-1;1;-2;2;-5;5;-10;10}
Vì 2x+1 luôn lẻ
=>2x+1={-1;1;-5;5}
Ta có bảng sau:
| 2x+1 | -1 | 1 | -5 | 5 |
| y-3 | -10 | 10 | -2 | 2 |
| x | -1 | 0 | -3 | 2 |
| y | -7 | 13 | 1 | 5 |
| NX | loại | tm | loại | tm |
Vậy các cặp gt (x;y) thỏa mãn là:
(0;13); (2;5)
b) 2xy+2y-x=16
<=>x(2y-1)+(2y-1)=15
<=>(2y-1)(x+1)=15
=>2y-1 và x+1 thuộc Ư(15)
=>Ư(15)={-1;1;-3;3;-5;5;-15;15}
Ta có bảng sau:
| x+1 | -1 | 1 | -3 | 3 | -5 | 5 | -15 | 15 |
| 2y-1 | -15 | 15 | -5 | 5 | -3 | 3 | -1 | 1 |
| x | -2 | 0 | -4 | 2 | -6 | 4 | -16 | 14 |
| y | -7 | 8 | -2 | 3 | -1 | 2 | 0 | 1 |
| NX | loại | tm | loại | tm | loại | tm | loại | tm |
Vậy các cặp gt (x;y) thỏa mãn là:
(0;8); (2;3); (4;2); (14;1)
x^2+2xy+y^2+16
\(Sửa:x^2+2xy+y^2-16\\ =\left(x+y\right)^2-16\\ =\left(x+y-4\right)\left(x+y+4\right)\)
-x^2 + 2xy - y^2 +16
=\(-\left(x^2-2xy+y^2\right)+16=16-\left(x-y\right)^2=\left(4-x+y\right)\left(4+x-y\right)\)
\(-x^2+2xy-y^2+16\)
\(=-\left(x^2-2xy+y^2-16\right)\)
\(=-\left(x-y-4\right)\left(x-y+4\right)\)
x/2=y/3 và x^2+2xy=16
Lời giải:
Đặt $\frac{x}{2}=\frac{y}{3}=t$
$\Rightarrow x=2t; y=3t$. Khi đó, thay vô điều kiện số 2:
$x^2+2xy=16$
$(2t)^2+2.2t.3t=16$
$16t^2=16$
$t^2=1=1^2=(-1)^2$
$\Rightarrow t=1$ hoặc $t=-1$
Nếu $t=1$ thì $x=2t=2; y=3t=3$
Nếu $t=-1$ thì $x=2t=-2; y=3t=-3$
Cho (x + 2y)(x2 - 2xy + 4y2) =0 và (x - 2y)(x2 + 2xy + 4y2) = 16. Tìm x và y
\(\left(x+2y\right)\left(x^2-2xy+4y^2\right)=0\)
\(\Leftrightarrow x^3+8y^3=0\)
\(\Leftrightarrow x^3=-8y^3\)
\(\left(x-2y\right)\left(x^2+2xy+4y^2\right)=16\)
\(\Leftrightarrow x^3-8y^3=16\)
\(\Leftrightarrow-8y^3-8y^3=16\)
\(\Leftrightarrow y^3=-1\Rightarrow y=-1\Rightarrow x=2\)
Tìm x và y, biết :
(x+2y)(x2-2xy+4y2)=0.
(x-y)(x2+ 2xy + 4y2)=16
2xy - x^2 - y^2 - 16
\(2xy-x^2-y^2-16\)
\(=-\left(x^2-2xy+y^2\right)-4^2\)
\(=-\left(x-y\right)^2-4^2\)
\(=\left(-x-y-4\right)\left(-x-y+4\right)\)
\( 2xy -x^2 - y^2 - 16 =-(x^2 -2xy + y^2 + 4^2) =-((x-y)^2+4^2) =-((x-y+4)(x+y+4)) \)