Có tất cả bao nhiêu giá trị nguyên của m để hàm số y = 2 x + m + 1 x + m - 1 nghịch biến trên mỗi khoảng - ∞ ; - 4 và 11 ; + ∞ ?
A. 13
B. 12
C. 15
D. 14
Cho hàm số \(y=-2x^3+(2m-1)x^2-(m^2-1)x+2\). Hỏi có tất cả bao nhiêu giá trị nguyên của tham số m để hàm số đã cho có hai điểm cực trị?
\(y'=-6x^2+2\left(2m-1\right)x-\left(m^2-1\right)\)
Hàm có 2 cực trị khi:
\(\Delta'=\left(2m-1\right)^2-6\left(m^2-1\right)>0\)
\(\Rightarrow-2m^2-4m+7>0\)
\(\Rightarrow-\dfrac{2+3\sqrt{2}}{2}< m< \dfrac{-2+3\sqrt{2}}{2}\)
\(\Rightarrow m=\left\{-3;-2;-1;0;1\right\}\)
Cho hàm số y = ( m - 1 ) x 3 - 5 x 2 + ( m + 3 ) x + 3 . Có tất cả bao nhiêu giá trị nguyên của m để hàm số y=f(|x|) có đúng 3 điểm cực trị?
A. 5.
B. 3.
C. 4.
D. 0.
Cho hàm số y = ( m - 1 ) x 3 - 5 x 2 + ( m + 3 ) x + 3 . Có tất cả bao nhiêu giá trị nguyên của m để hàm số y = f x có đúng 3 điểm cực trị?
A. 5
B. 3
C. 4
D. 0
Để hàm số có đúng 3 cực trị thì hàm số có 2 cực trị trái dấu.
Trước hết cần điều kiện m-1≠0
⇔m≠1
Ta có
Để hàm số
có 2 cực trị trái dấu thì phương trình y'=0 có 2 nghiệm trái dấu
Kết hợp điều kiện
Khi m=1 thì hàm số trở thành có 1 cực trị Khi đó hàm số có đúng 3 điểm cực trị.
Vậy m∈-2;-1;0;1
Chọn C
Cho hàm số f(x) = (m - 1)x3 - 5x2 + (m+3)x + 3. Có tất cả bao nhiêu giá trị nguyên của tham số m để hàm số y = f(\(\left|x\right|\)) có đúng 3 điểm cực trị?
- Với \(m=1\) thỏa mãn
- Với \(m\ne1\):
\(f'\left(x\right)=3\left(m-1\right)x^2-10x+m+3\)
\(f\left(\left|x\right|\right)\) có số cực trị bằng \(2k+1\) với \(k\) là số cực trị dương của \(f\left(x\right)\) nên hàm có 3 cực trị khi \(f'\left(x\right)=0\) có đúng 1 nghiệm dương
TH1: \(f'\left(x\right)=0\) có 1 nghiệm bằng 0 \(\Rightarrow m=-3\Rightarrow f'\left(x\right)=-12x^2-10x\) ko có nghiệm dương (loại)
TH2: \(f'\left(x\right)=0\) ko có nghiệm bằng 0 nào \(\Rightarrow f'\left(x\right)=0\) khi và chỉ khi nó có 2 nghiệm trái dấu
\(\Rightarrow ac< 0\Leftrightarrow3\left(m-1\right)\left(m+3\right)< 0\)
\(\Rightarrow-3< m< 1\)
Vậy \(-3< m\le1\)
Cho hàm số f ( x ) = m - 1 x 3 - 5 x 2 + m + 3 x + 3 . Có tất cả bao nhiêu giá trị nguyên của tham số m để hàm số y = f x có đúng 3 điểm cực trị?
A. 1.
B. 5.
C. 3.
D. 4.
Cho hàm số y = m . x − 1 − 9 x − 1 − m . Có tất cả bao nhiêu giá trị nguyên của m để hàm số đồng biến trên khoảng 2 ; 17 ?
A. 2.
B. 3.
C. 4.
D. 5.
Trong tất cả các giá trị của m để đồ thị hàm số y = x − 4 m x 2 + m 2 − 17 có bốn đường tiệm cận, có bao nhiêu giá trị m nguyên
A. 1.
B. 2.
C. 3.
D. 4.
Trong tất cả các giá trị của m để đồ thị hàm số y = x − 4 m x 2 + m 2 − 17 có bốn đường tiệm cận, có bao nhiêu giá trị m nguyên?
A. 1
B. 2
C. 3
D. 4
Cho hàm số \(y=\dfrac{x^3}{3}-\left(m-1\right)x^2+3\left(m-1\right)x+1\). Có tất cả bao nhiêu giá trị nguyên của tham số m để hàm số đã cho đồng biến trên khoảng \(\left(1;+\infty\right)\)
\(y'=x^2-2\left(m-1\right)x+3\left(m-1\right)\)
Hàm đồng biến trên khoảng đã cho khi với mọi \(x>1\) ta luôn có:
\(g\left(x\right)=x^2-2\left(m-1\right)x+3\left(m-1\right)\ge0\)
\(\Rightarrow\min\limits_{x>1}g\left(x\right)\ge0\)
Do \(a=1>0;-\dfrac{b}{2a}=m-1\)
TH1: \(m-1\ge1\Rightarrow m\ge2\)
\(\Rightarrow g\left(x\right)_{min}=f\left(m-1\right)=\left(m-1\right)^2-2\left(m-1\right)^2+3\left(m-1\right)\ge0\)
\(\Rightarrow\left(m-1\right)\left(4-m\right)\ge0\Rightarrow1\le m\le4\Rightarrow2\le m\le4\)
TH2: \(m-1< 1\Rightarrow m< 2\Rightarrow g\left(x\right)_{min}=g\left(1\right)=m\ge0\)
Vậy \(0\le m\le4\)
Có tất cả bao nhiêu giá trị của m nguyên để hàm số:
y = x8+ (m - 2)x5- (m2- 4)x4+ 1 đạt cực tiểu tại x = 0?
Giúp t vs mấy bro):))!!!
\(y=x^8+\left(m-2\right)x^5-4\left(m^2-4\right)+1\)
Tập xác định \(D=ℝ\)
\(y'=8x^7+5\left(m-2\right)x^4\)
\(y''=56x^6+20\left(m-2\right)x^3\)
Để hàm số đạt cực tiểu tại \(x=0\)
\(\left\{{}\begin{matrix}y'\left(0\right)=0\\y''\left(0\right)>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}0m=0\\0m>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\forall m\inℝ\\m>0\end{matrix}\right.\) \(\Leftrightarrow m>0\)
Vậy \(m>0\) hàm số trên đạt cực tiểu tại \(x=0\)
Với đề thi THPT quốc gia môn Toán, đây là một trong những câu khó. Không nhiều các bạn học sinh giải được đề toán trên. Đây là một hàm số bậc 8, hoàn toàn khác với những hàm số thông dụng được học trên lớp, để giải được bài này, các bạn cần phải sử dụng kiến thức từ định nghĩa và tính chất của cực trị hàm số bất kì. Ta có:
y" = 8x7 + 5(m - 2)x4 - 4(m2 - 4)x3 + 1
Hàm đạt cực tiểu tại x = 0 thì y"(x) = 0 và y"(x) đổi dấu từ âm sang dương khi x chạy qua điểm 0. Từ đó ta tương đương với số hạng chứa x có lũy thừa thấp nhất có hệ số khác 0 trong biểu thức y’ là lũy thừa bậc lẻ, hệ số dương.
Có nghĩa là :
–4(m2 - 4) > 0 và m - 2 = m² – 4 = 0
⇔ –2 Bài 2 - Mã đề 124 đề thi môn Toán THPT Quốc gia 2017
Dưới đây là hàm số y = f(x) được thể hiện trong bình với bảng biến thiên:
Tìm giá trị cực tiểu, cực đại của hàm số đã cho.
Bài giải:
Theo như bảng biến thiên các em học sinh nhận thấy được cực tiểu là 0 và giá trị cực đại của hàm số là 3.
Nhiều câu hỏi cho sẵn bảng biến thiên hay hình vẽ đồ thị hàm số sẽ xuất hiện trong đề thi. Chúng ta có thể vận dụng chính những dữ liệu này để có cho mình được đáp án đúng một cách nhanh chóng.
Đây nhé bro:))!