a) tìm số có 2 chữ số , biết rằng nếu nhân số đó với 135 thì ta được 1 số chính phương
b) tìm số chính phương có 4 chữ số sao cho 2 chữ số đầu giống nhau, 2 chữ số cuối giống nhau.
mấy pạn giúp mình với!!!!!!!!!
Bài 1 Tìm số có 2 chữ số ,biết rằng nếu nhân số đó với 135 thì được một số chính phươmg
Bài 2 :Tìm số chính phương có 4 chữ số sao cho 2 chữ số đầu giống nhau,hai chữ số cuối giống nhau
Bài 1:
Gọi số cần tìm là x; số sau là y2, ta có:
35x = y2
Mà 35 = 5 . 7, x ko thể = 5 hoặc 7
=> Số đó = 35
Bài 2:
Giả sử aabb = n2
<=> a . 103 + a . 102 + a . 10 + b = n2
<=> 11(100a + b) = n2
<=> n2 chia hết cho 11
<=> n chia hết cho 11
Do n2 có 4 chữ số nên: 32 < n < 100
=> n = 33; n = 44; n = 55; ...; n = 99
Thử n = 88 (TMYK)
=> Số đó là: 7744
Bài 1 :
Gọi số phải tìm là n ,ta có \(135n=a^2\left(a\in N\right)\)hay \(3^3.5.n=a^2\)
Vì số chính phương chỉ chứa các thừa số nguyên tố với số mũ chẵn nên \(n=3.5.k^2\left(k\in N\right)\)
Vì n là số có 2 chữ số nên \(10\le3.5.k^2\le99\Rightarrow k^2\in\left(1,4\right)\)
- Nếu \(k^2=1\)thì \(n=15\)
-Nếu \(k^2=4\)thì \(n=60\)
Vậy số cần tìm là 15 hoặc 60
Bài 2 :
Gọi số chính phương cần tìm là \(n^2=aabb\left(a,b\in N\right)\)và \(\left(1\le a\le9,0\le b\le9\right)\)
Ta có \(n^2=aabb=1100a+11b=11\left(99a+a+b\right)\left(1\right)\)
\(\Rightarrow\left(99a+a+b\right)⋮11\Rightarrow\left(a+b\right)⋮11\Rightarrow a+b=11\)
Thay \(a+b=11\)vào (1)ta được \(n^2=11\left(99a+11\right)=11^2\left(9a+1\right)\)
\(\Rightarrow9a+1\)phải là số chính phương
a | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
9a+1 | 10 | 19 | 28 | 37 | 46 | 55 | 64 | 73 | 82 |
Ta thấy chỉ có \(a=7\)thì \(9a+1=64=8^2\)
Vậy \(a=7\Rightarrow b=4\)và số cần tìm là \(7744=11^2.8^2=88^2\)
Chúc bạn học tốt ( -_- )
1 Tìm số tự nhiên có 2 chữ số biết nhân nó cới 135 thì ta được 1 số chính phương
2 TÌm số chính phươn có 4 chữ số sao cho 2 chữ số đầu giống nhau, 2 chữ số cuối giông nhau
cần làm gấp
cách 2
gọi số cần tìm là n
Ta có
n.135=a^2
hay 3^3.5.n=a^2
Số chính phương chỉ có các thừa số với số mũ chẵn nên
n=3.5.k^2
Với k=1=>n=15
k=2=>n=60
k>2 =>n>100=>loại
Tìm số chính phương có 4 chữ số biết rằng 2 chữ số đầu giống nhau, hai chữ số cuối giống nhau.
Giups mình ạ.
Tham khảo:
https://olm.vn/hoi-dap/detail/19696548089.html
refer
https://hoc24.vn/cau-hoi/tim-mot-so-chinh-phuong-co-bon-chu-so-biet-rang-hai-chu-so-dau-giong-nhau-va-hai-chu-so-cuoi-giong-nhau.137876568249
Tìm số chính phương có 4 chữ số biết rằng 2 chữ số đầu giống nhau , 2 chữ số cuối giống nhau
Cách 1 : Gọi số chính phương phải tìm là . n\(^2\)= aabb gạch ngang trên đầu (a,b \(\in N\)\(\le a\le9,0\le b\le9\) )
Ta có \(n^2\)= aabb gạch ngang trên đầu = 1100a + 11b = 11.(100a + b) = 11 .(99a + a + b) (1).
Do đó 99a + a + b chia hết cho 11 nên a + b chia hết cho 11, vậy a + b = 11
Thay a +b = 11 vào (1) được \(n^2\)= 11.(99a + 11) = 11\(^2\)= (9a + 1). Do đó 9a + 1 phải là số chính phương.
Thử với a = 1,2,3,4,5,6,7,8,9 chỉ có a = 7 cho 9a + 1 = 8\(^2\) là số chính phương.
Vậy a = 7
( còn lại pạn tự làm )
Cách 2
Giả sử aabb = n\(^2\)
\(\Leftrightarrow\)a.10\(^3\) + a.10\(^2\)+ b.10 + b = n\(^2\)
\(\Leftrightarrow\)11(100a + b) = n\(^2\)
\(\Rightarrow\)n\(^2\) chia hết cho 11
\(\Rightarrow\)n chia hết cho 11
Do n\(^2\)có 4 chữ số nên 32 < n < 100
\(\Rightarrow\)n = 33,n = 44,n = 55,...n = 99
Thử vào thì n = 88 là thỏa mãn
Vậy số đó là 7744
Sorry bạn.Mình không biết làm.
Bạn vào câu hỏi tương tự đó
Tìm số có 2 chữ số, biết rằng:
a) Nếu nhân số đó với 45 thì được 1 số chính phương
b) Nếu nhân số đó với 135 thì được 1 số chính phương
Tìm số chính phương biết: số đó có 4 chữ số,2 chữ số đầu tiên giống nhau và 2 chữ số cuối cùng giống nhau ?
tìm số chính phương có 4 chữ số sao cho 2 chữ số đầu giống nhau , 2 chữ số cuối giống nhau
Câu hỏi của Hatsune Miku - Toán lớp 6 - Học toán với OnlineMath
Giả sử aabb = n2
<=> a . 103 + a . 102 + b . 10 + b = n2
<=> 11( 100a + b ) = n2
=> n2 chia hết cho 11
=> n chia hết cho 11
Do n2 có 4 chữ số nên
32 < n < 100
=> n = 33 , n = 44 , n = 55 , .......n = 99
Thử vào thì n = 88 là thỏa mãn
Vậy số đó là 7744
Nguyễn Thị Lan Hương copy trên mạng
Giả sử aabb = n2
<=> a . 103 + a . 102 + b . 10 + b = n2
<=> 11( 100a + b ) = n2
=> n2 chia hết cho 11
=> n chia hết cho 11
Do n2 có 4 chữ số nên
32 < n < 100
=> n = 33 , n = 44 , n = 55 , .......n = 99
Thử vào thì n = 88 là thỏa mãn
Vậy số đó là 7744
Tìm số chính phương có 4 chữ số sao cho 2 chữ số đầu giống nhau và 2 chữ số cuối giống nhau
Gọi số chính phương đó là aabb
Ta có : \(aabb=n^2\)
\(aabb=1000a+100a+10b+b\)
\(=11\left(100a+b\right)=n^2\)
\(=11\left(99a+a+b\right)=n^2\left(1\right)\)
Do aabb chia hết cho 11 nên a + b chia hết cho 11
=> a + b = 11 \(\left(2\right)\)
Thay \(\left(2\right)\) vào \(\left(1\right)\) ta có :
\(n^2=11^2\left(9a+1\right)\)
=>\(9a+1\) là số chính phương
Thử a = 1 ; 2 ; 3 ; ... ; 9 ta thấy chỉ có 7 thỏa mãn
=> a = 7 => b = 4
Vậy số cần tìm là 7744
Tìm số chính phương có 4 chữ số sao cho 2 chữ số đầu giống nhau , 2 chữ số cuối giống nhau
giả sử aabb = n2
<=> a . \(10^3\)+ a \(.10^2\) + b .10 + b = n2
<=>11 ( 100a + b ) = n2
<=> n2 chia hết cho 11
=> n chia hết cho 11
do n2 cho 4 chữ số nên
32 < n < 100
=> n = 33 , n = 44 ; n = 55; ....n ; 99
Thử vào thì n = 88 là thõa mãn
Vậy số đó là 7744