Chứng minh rằng phương trình cos2x = sinx − 2 có ít nhất hai nghiệm trong khoảng - π 6 ; π
Cho hàm số y = cos2x + sinx. Phương trình y’ = 0 có bao nhiêu nghiệm thuộc khoảng (0; π)
A. 1 nghiệm.
B. 2 nghiệm.
C. 3 nghiệm.
D. 4 nghiệm.
Chọn C.
y' = -2cosxsinx + cosx = cosx(1 – 2sinx)
Vì . Vậy có 3 nghiệm thuộc khoảng (0; π).
Cho hàm số y = cos2x + sinx. Phương trình y’ = 0 có bao nhiêu nghiệm thuộc khoảng (0; π)
A. 1 nghiệm.
B. 2 nghiệm.
C. 3 nghiệm.
D. 4 nghiệm.
Trong [0;2 π), phương trình cos2x + sinx = 0 có tập nghiệm là:
A. 7 π 6 ; 11 π 6
B. π 2 ; 7 π 6 ; 11 π 6
C. 5 π 6 ; 7 π 6
D. π 6 ; 7 π 6 ; 5 π 6
Trong [0;π],phương trình sin x = 1 – cos 2 x có tập nghiệm là:
A. π 2
B. π 2 ; 3 π 2
C. 0 ; π
D. 0 ; π 2 ; π
Phương trình sin 3 x + cos 2 x – sin x = 0 có tập nghiệm (0; π) là:
A. {π/4;3π/4}
B. {π/4}
C. {3π/4}
D. {π/6;π/4;3π/4}
Chọn A
Ta có sin3x+ cos2x- sinx= 0 ⇔ cos2x(2sinx+1)=0. Lưu ý trong khoảng (0;π), sinx > 0
Chứng minh rằng phương trình x 5 – 3 x 4 + 5 x – 2 = 0 có ít nhất ba nghiệm nằm trong khoảng - 2 ; 5
Đặt f(x) = x5 – 3x4 + 5x – 2
f(x) là hàm đa thức nên liên tục trên R.
Ta có: f(0) = –2 < 0
f(1) = 1 > 0
f(2) = -8 < 0
f(3) = 13 > 0
⇒ f(0).f(1) < 0; f(1).f(2) < 0; f(2).f(3) < 0
⇒ Phương trình f(x) = 0 có ít nhất 1 nghiệm thuộc khoảng (0; 1); 1 nghiệm thuộc khoảng (1; 2); 1 nghiệm thuộc khoảng (2; 3)
⇒ f(x) = 0 có ít nhất 3 nghiệm thuộc (0; 3) hay f(x) = 0 có ít nhất 3 nghiệm thuộc (-2; 5).
Tìm m để phương trình cos2x+2(m+1)sinx-2m-1=0 có đúng 3 nghiệm xϵ (0;π)
A. 0≤ m< 1.
B. -1< m< 1
C. 0< m≤1
D. 0< m< 1.
Chứng minh phương trình :
a) \(x^2-3x-7=0\) luôn có nghiệm
b) \(\cos2x=2\sin x-2\) có ít nhất hai nghiệm trong khoảng \(\left(-\dfrac{\pi}{6};\pi\right)\)
c) \(\sqrt{x^3+6x+1}-2=0\) có nghiệm dương
Cho phương trình (1-Sinx)(Cos2x + 3mSinx+Sinx-1)=\(mCos^2x\) (m là tham số). Tìm các giá trị thực của m để phương trình có 6 nghiệm khác nhau thuộc khoảng \(\left(-\dfrac{\Pi}{2};2\Pi\right)\)
\(\Leftrightarrow\left(1-sinx\right)\left(cos2x+3msinx+sinx-1\right)=m\left(1-sinx\right)\left(1+cosx\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\Rightarrow x=\dfrac{\pi}{2}\\cos2x+3m.sinx+sinx-1=m\left(1+sinx\right)\left(1\right)\end{matrix}\right.\)
Bài toán thỏa mãn khi (1) có 5 nghiệm khác nhau trên khoảng đã cho thỏa mãn \(sinx\ne1\)
Xét (1):
\(\Leftrightarrow1-2sin^2x+3msinx+sinx-1=m+m.sinx\)
\(\Leftrightarrow2sin^2x-sinx-2m.sinx+m=0\)
\(\Leftrightarrow sinx\left(2sinx-1\right)-m\left(2sinx-1\right)=0\)
\(\Leftrightarrow\left(2sinx-1\right)\left(sinx-m\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=\dfrac{1}{2}\Rightarrow x=\dfrac{\pi}{6};\dfrac{5\pi}{6}\\sinx=m\left(2\right)\end{matrix}\right.\)
\(\Rightarrow\left(2\right)\) có 3 nghiệm khác nhau trên \(\left(-\dfrac{\pi}{2};2\pi\right)\)
\(\Leftrightarrow-1< m< 0\)