Trong số các hình chữ nhật có cùng chu vi 16cm, hãy tìm hình chữ nhật có diện tích lớn nhất.
Trong số các hình chữ nhật có cùng chu vi 16cm, hãy tìm hình chữ nhật có diện tích lớn nhất.
Nửa chu vi hình chữ nhật là: 16 : 2 = 8cm.
Gọi độ dài 1 cạnh của hình chữ nhật là x (cm)
⇒ độ dài cạnh còn lại là : 8 – x (cm)
⇒ Diện tích của hình chữ nhật là:
Vậy trong các hình chữ nhật có chu vi 16cm thì hình vuông cạnh bằng 4cm có diện tích lớn nhất bằng 16cm2.
Trong số các hình chữ nhật có cùng chu vi 16cm , hãy tìm hcn có diện tích lớn nhất
Nửa chu vi hình chữ nhật là: 16 : 2 = 8cm.
Gọi độ dài 1 cạnh của hình chữ nhật là x (cm)
⇒ độ dài cạnh còn lại là : 8 – x (cm)
⇒ Diện tích của hình chữ nhật là:
Vậy trong các hình chữ nhật có chu vi 16cm thì hình vuông cạnh bằng 4cm có diện tích lớn nhất bằng 16cm2.
Trong tất cả các hình chữ nhật có cùng chu vi bằng 16cm thì hình chữ nhật có diện tích lớn nhất bằng
A. 30 c m 2
B. 20 c m 2
C. 16 c m 2
D. 36 c m 2
Giả sử hình chữ nhật có chiều dài, chiều rộng lần lượt là: a , b ( 0 < a ≤ b ) , ( c m )
Theo đề bài ta có: a + b = 16 2 = 8 ( c m )
Diện tích của hình chữ nhật:
S = a b ≤ a + b 2 2 = 8 2 2 = 16
⇒ S m a x = 16 ( c m 2 ) khi và chỉ khi a=b=4
Chọn đáp án C.
Trong tất cả các hình chữ nhật có cùng chu vi bằng 16cm thì hình chữ nhật có diện tích lớn nhất bằng:
A. 30 c m 2
B. 20 c m 2
C. 16 c m 2
D. 36 c m 2
Phương pháp:
BĐT Cô si cho 2 số không âm a và b: dấu bằng xảy ra khi và chỉ khi a= b
Cách giải:
Giả sử hình chữ nhật có chiều dài, chiều rộng lần lượt là:
Theo đề bài ta có:
Diện tích của hình chữ nhật:
khi và chỉ khi a = b = 4
Chọn: C
Trong tất cả các hình chữ nhật có cùng chu vi bằng 16cm thì hình chữ nhật có diện tích lớn nhất bằng:
A. 30 c m 2
B. 20 c m 2
C. 16 c m 2
D. 36 c m 2
Trong số các hình chữ nhật cùng có chu vi 16 cm, hãy tìm hình chữ nhật có diện tích lớn nhất
Kí hiệu x, y thứ tự là chiều dài và chiều rộng của hình chữ nhật (0 < x, y < 16). Khi đó x + y = 8. Theo bất đẳng thức Cô-si, ta có : 8 = x + y ≥ ⇔ xy ≤ 16.
xy =16 ⇔ x = y = 4. Vậy diện tích hình chữ nhật lớn nhất bằng 16 cm2 khi x = y = 4(cm), tức là khi hình chữ nhật là hình vuông.
Vẽ hình chữ nhật ABCD có AB = 5cm, BC = 3cm.
a) Hãy vẽ một hình chữ nhật có diện tích nhỏ hơn nhưng có chu vi lớn hơn hình chữ nhật ABCD. Vẽ được mấy hình như vậy?
b) Hãy vẽ hình vuông có chu vi bằng chu vi hình chữ nhật ABCD. Vẽ được mấy hình vuông như vậy? So sánh diện tích hình chữ nhật với diện tích hình vuông có cùng chu vi vừa vẽ. Tại sao trong các hình chữ nhật có cùng chu vi thì hình vuông có diện tích lớn nhất?
a) Hình chữ nhật ABCD đã cho có diện tích là SACBD = 3.5 = 15 (cm2)
Hình chữ nhật có kích thước là 1cm x 12cm có diện tích là 12cm2 và chu vi là (1 + 12).2 = 26 (cm) (có 26 > 15)
Hình chữ nhật kích thước 2cm x 7cm có diện tích là 14cm2 và chu vi là (2 + 7).2 = 18 (cm)
(có 18 > 15).
Như vậy, vẽ được nhiều hình chữ nhật có diện tích bé hơn nhưng có chu vi lớn hơn hình chữ nhật ABCD cho trước.
b) + Chu vi hình chữ nhật ABCD đã cho là (5 + 3).2 = 16 cm
Cạnh hình vuông có chu vi bằng chu vi hình chữ nhật ABCD là: 16 : 4 = 4 cm
Diện tích hình vuông này là 4.4 = 16 cm2
(Ở trên hình là ví dụ hình vuông MNPQ có cạnh là 4cm)
Vậy SHCN < SHV
+ Trong các hình chữ nhật có cùng chu vi thì hình vuông có diện tích lớn nhất.
Gọi cạnh của hình chữ nhật có độ dài lần lượt là a, b.
Hình vuông có cùng chu vi với hình chữ nhật nên cạnh hình vuông là
⇒ Hình vuông có diện tích lớn nhất.
Đố :
Vẽ hình chữ nhật ABCD có AB = 5cm, BC = 3cm
a) Hãy vẽ một hình chữ nhật có diện tích nhỏ hơn nhưng có chu vi lớn hơn hình chữ nhật ABCD. Vẽ được mấy hình như vậy ?
b) Hãy vẽ hình vuông có chu vi bằng chu vi hình chữ nhật ABCD. Vẽ được mấy hình vuông như vậy ? So sánh diện tích hình chữ nhật với diện tích hình vuông có cùng chu vi vừa vẽ. Tại sao trong các hình chữ nhật có cùng chu vi thì hình vuông có diện tích lớn nhất ?
a) Hình chữ nhật ABCD đã cho có diện tích là SACBD = 3.5 = 15 (cm2).
- Hình chữ nhật có kích thước 1cm x 12cm có diện tích là 12cm2 và chu vi là ( 1+12).2 = 26(cm) (có 26>15).
- Hình chữ nhật có kích thước 2cmx7cm co diện tích là 14cm2 và chu vi là (2+7).2 = 18(cm) (có 18 > 15).
Như vậy, vẽ được nhiều hình chữ nhật có diện tích bé hơn nhưng có chu vi lớn hơn hình chữ nhật ABCD cho trước.
b) Chu vi hình chữ nhật ABCD đã cho là:
(5+3).2 = 16 (cm)
Cạnh hình vuông có chu vi bằng chu vi hình chữ nhật ABCD là:
16:4 = 4(cm).
Diện tích hình vuông này là 4.4 = 16 (m2)
Vậy Shcn < Shv
Trong các hình chữ nhật có cùng chu vi thì hình vuông có diện tich lớn nhất.
Ta luôn có ≥ √ab
Suy ra ab ≤ .
Hình trên là hình vẽ chứng tỏ hình chữ nhật cạnh a,b (a>b) có diện tích nhỏ hơn diện tích hình vuông cạnh .
Trên hình a= 5cm, b = 3cm, = 4cm
a - = 1cm, - b = 1cm
Do đó
SEBCG = b. ( a- ) = 3.1 = 3 (cm2).
SDGHI = . ( - b ) = 4.1 = 4 (cm2).
SAEGD = b. = 3.4 = 12 (cm2).
Nên SABCD = SEBCG + SAEGD = 3 + 12 = 15(cm2).
SAEHI = SDGHI + SAEGD = 4 + 12 = 16 (cm2).
Vậy SABCD < SAEHI
Tổng quát:
Hình chữ nhật EBCG có một cạnh bằng a - , cạnh kia bằng b.
Hình chữ nhật DGHI có một cạnh bằng - b, cạnh kia bằng .
Mà a - bằng - b và b < ( theo giả thiết a> b)
nên SEBCG < SDGHI
Cộng thêm SAEGD vào mỗi vế bất đẳng thức ta được
SEBCG + SAEGD < SDGHI + SAEGD
Vậy SABCD < SAEHI
Hướng dẫn giải:
a) Hình chữ nhật ABCD đã cho có diện tích là SACBD = 3.5 = 15 (cm2).
- Hình chữ nhật có kích thước 1cm x 12cm có diện tích là 12cm2 và chu vi là ( 1+12).2 = 26(cm) (có 26>15).
- Hình chữ nhật có kích thước 2cmx7cm co diện tích là 14cm2 và chu vi là (2+7).2 = 18(cm) (có 18 > 15).
Như vậy, vẽ được nhiều hình chữ nhật có diện tích bé hơn nhưng có chu vi lớn hơn hình chữ nhật ABCD cho trước.
b) Chu vi hình chữ nhật ABCD đã cho là:
(5+3).2 = 16 (cm)
Cạnh hình vuông có chu vi bằng chu vi hình chữ nhật ABCD là:
16:4 = 4(cm).
Diện tích hình vuông này là 4.4 = 16 (m2)
Vậy Shcn < Shv
Trong các hình chữ nhật có cùng chu vi thì hình vuông có diện tich lớn nhất.
Ta luôn có ≥ √ab
Suy ra ab ≤ .
Hình trên là hình vẽ chứng tỏ hình chữ nhật cạnh a,b (a>b) có diện tích nhỏ hơn diện tích hình vuông cạnh .
Trên hình a= 5cm, b = 3cm, = 4cm
a - = 1cm, - b = 1cm
Do đó
SEBCG = b. ( a- ) = 3.1 = 3 (cm2).
SDGHI = . ( - b ) = 4.1 = 4 (cm2).
SAEGD = b. = 3.4 = 12 (cm2).
Nên SABCD = SEBCG + SAEGD = 3 + 12 = 15(cm2).
SAEHI = SDGHI + SAEGD = 4 + 12 = 16 (cm2).
Vậy SABCD < SAEHI
Tổng quát:
Hình chữ nhật EBCG có một cạnh bằng a - , cạnh kia bằng b.
Hình chữ nhật DGHI có một cạnh bằng - b, cạnh kia bằng .
Mà a - bằng - b và b < ( theo giả thiết a> b)
nên SEBCG < SDGHI
Cộng thêm SAEGD vào mỗi vế bất đẳng thức ta được
SEBCG + SAEGD < SDGHI + SAEGD
Vậy SABCD < SAEHI
a) Hình chữ nhật ABCD đã cho có diện tích là SACBD = 3.5 = 15 (cm2).
- Hình chữ nhật có kích thước 1cm x 12cm có diện tích là 12cm2 và chu vi là ( 1+12).2 = 26(cm) (có 26>15).
- Hình chữ nhật có kích thước 2cmx7cm co diện tích là 14cm2 và chu vi là (2+7).2 = 18(cm) (có 18 > 15).
Như vậy, vẽ được nhiều hình chữ nhật có diện tích bé hơn nhưng có chu vi lớn hơn hình chữ nhật ABCD cho trước.
b) Chu vi hình chữ nhật ABCD đã cho là:
(5+3).2 = 16 (cm)
Cạnh hình vuông có chu vi bằng chu vi hình chữ nhật ABCD là:
16:4 = 4(cm).
Diện tích hình vuông này là 4.4 = 16 (m2)
Vậy Shcn < Shv
Trong các hình chữ nhật có cùng chu vi thì hình vuông có diện tich lớn nhất.
Ta luôn có ≥ √ab
Suy ra ab ≤ .
Hình trên là hình vẽ chứng tỏ hình chữ nhật cạnh a,b (a>b) có diện tích nhỏ hơn diện tích hình vuông cạnh .
Trên hình a= 5cm, b = 3cm, = 4cm
a - = 1cm, - b = 1cm
Do đó
SEBCG = b. ( a- ) = 3.1 = 3 (cm2).
SDGHI = . ( - b ) = 4.1 = 4 (cm2).
SAEGD = b. = 3.4 = 12 (cm2).
Nên SABCD = SEBCG + SAEGD = 3 + 12 = 15(cm2).
SAEHI = SDGHI + SAEGD = 4 + 12 = 16 (cm2).
Vậy SABCD < SAEHI
Tổng quát:
Hình chữ nhật EBCG có một cạnh bằng a - , cạnh kia bằng b.
Hình chữ nhật DGHI có một cạnh bằng - b, cạnh kia bằng .
Mà a - bằng - b và b < ( theo giả thiết a> b)
nên SEBCG < SDGHI
Cộng thêm SAEGD vào mỗi vế bất đẳng thức ta được
SEBCG + SAEGD < SDGHI + SAEGD
Vậy SABCD < SAEHI
diện tích hình chữ nhật có diện tích 27 cm2 . Chiều rộng bằng 1/3 chiều dài
a, tính chu vi hình chữ nhật đó
b,trong các hình chữ nhật có cùng chu vi hình chữ nhật thì hình nào có diện tích lớn nhất ?
a) Dài: 3x
Rộng x
=> S: 3x.x=3x2=27
<=>x.x=9
<=>x=3
=> Rộng : 3(cm) ; Dài: 9 (cm)
=> Chu vi: (3+9) x 2=24(cm)
b) Trong các hình chữ nhật cùng chu vi thì hình vuông có diện tích lớn nhất.