Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thu Tuyền Trần Thạch
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 12 2023 lúc 4:50

a: Xét (A;AH) có

AH là bán kính

BC\(\perp\)AH tại H

Do đó: BC là tiếp tuyến của (A;AH)

b: Xét (A) có

BH,BD là các tiếp tuyến

Do đó: BH=BD và AB là phân giác của góc HAD

Xét (A) có

CE,CH là các tiếp tuyến

Do đó: CE=CH và AC là phân giác của góc HAE

c: BD+CE

=BH+CH

=BC

d: AB là phân giác của góc HAD

=>\(\widehat{HAD}=2\cdot\widehat{HAB}\)

AC là phân giác của góc HAE

=>\(\widehat{HAE}=2\cdot\widehat{HAC}\)

Ta có: \(\widehat{HAD}+\widehat{HAE}=\widehat{EAD}\)

=>\(\widehat{EAD}=2\cdot\left(\widehat{HAB}+\widehat{HAC}\right)\)

=>\(\widehat{EAD}=2\cdot\widehat{BAC}=180^0\)

=>E,A,D thẳng hàng

Vũ Hà Linh
Xem chi tiết
KYAN Gaming
Xem chi tiết
An Thy
29 tháng 7 2021 lúc 9:31

a) Vì \(BC\bot AH\Rightarrow BC\) là tiếp tuyến của (A;AH)

Vì BD,BH là tiếp tuyến \(\Rightarrow AB\) là phân giác \(\angle DAH\Rightarrow\angle DAH=2\angle BAH\)

Vì CE,CH là tiếp tuyến \(\Rightarrow AC\) là phân giác \(\angle EAH\Rightarrow\angle EAH=2\angle CAH\)

\(\Rightarrow\angle DAH+\angle EAH=2\left(\angle BAH+\angle CAH\right)=2\angle BAC=180\)

\(\Rightarrow\angle DAE=180\Rightarrow D,A,E\) thẳng hàng

b) Vì  \(AB\) là phân giác \(\angle DAH\)

\(\Rightarrow\angle DAB=\angle BAH=90-\angle ABC=\angle ACB\)

\(\Rightarrow DA\) là tiếp tuyến của (BAC) nên DE là tiếp tuyến của (BAC)

mà \(\angle BAC=90\Rightarrow\) (BAC) là đường tròn đường kính (BC)

nên ta có đpcm

 

 

Tôi ghét Hóa Học 🙅‍♂️
29 tháng 7 2021 lúc 9:38

Tự vẽ hình nha !

a) Ta có AH vuông góc BC 

H thuộc (A;AH)

=> BC là tiếp tuyến của (A;AH)

Xét (A) có DB và BH là 2 tiếp tuyến cắt nhau

=> A1 = A2

Tương tự ta chứng minh được : A3 = A4

Mà A2 + A3 = 90 độ

=> A1 + A2 + A3 + A4 = 90 độ + 90 độ = 180 độ

=> DAE = 180 độ

=> D,A,E thẳng hàng

b) Gọi M là trung điểm BC

Theo tính chất tiếp tuyến ta có :

AD vuông góc BD

AE vuông góc CE

=> BD//CE

=> BDEC là hình thang

=> MA là đường trung bình của hình thang BDEC

=> MA // BD

=> MA vuông góc DE

Xét tam giác vuông ABC có : MA = MB = MC

=> M là tâm đường tròn đường kính BC với MA là bán kính

Vậy DE là tiếp tuyến đường tròn tâm M đường kính BC

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 10 2017 lúc 4:47

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Gọi M là trung điểm của BC

Theo tính chất của tiếp tuyến, ta có:

AD ⊥ DB; AE ⊥ CE

Suy ra: BD // CE

Vậy tứ giác BDEC là hình thang

Khi đó MA là đường trung bình của hình thang BDEC

Suy ra: MA // BD ⇒ MA ⊥ DE

Trong tam giác vuông ABC ta có : MA = MB = MC

Suy ra M là tâm đường tròn đường kính BC với MA là bán kính

Vậy DE là tiếp tuyến của đường tròn tâm M đường kính BC.

vu cong tan
Xem chi tiết
nguyen thi diu
31 tháng 3 2016 lúc 21:56
a,DOE=90 b,co: DB= DA; AE= EC(tinh chat hai tiep tuyen cat nhau)suy ra: DA+AE=DB+CE suy ra:DE= BD+ Xet tam giac: ODE vuong tai O co duong cao AO nen suy ra OA^2=DA*AE ma AD=DB,AE=CE nen OA^2=DB*CE suy ra R^2=DB*CE
Hà Tuấn Anh
12 tháng 10 2017 lúc 21:30

ko co hinh hả bạn

Quốc Huy
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 7 2017 lúc 4:43

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Theo tính chất của hai tiếp tuyến cắt nhau ta có:

AB là tia phân giác của góc HAD

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vậy ba điểm D, A, E thẳng hàng.

jennie
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Lê Nhật Phương
30 tháng 12 2017 lúc 16:59

a) Theo tính chất hai tiếp tuyến cắt nhau ta có:

a) Theo tính chất hai tiếp tuyến cắt nhau ta có:

AB là tia phân giác của góc HAD

\(\Rightarrow\widehat{DAB}=\widehat{BAH}\)

AC là tia phân giác của góc HAE

\(\Rightarrow\widehat{HAD}=\widehat{CAE}\)

Ta có: \(\widehat{HAD}+\widehat{HEA}=2.\left(\widehat{BAH}+\widehat{HAC}\right)=2.\widehat{BAC}=2.90^o=180^o\)

Vậy ba điểm D, A, E thẳng hàng.

b) Gọi M là trung điểm của BC

Theo tính chất của tiếp tuyến, ta có: \(AD\downarrow BD;AE\downarrow CE\)

Suy ra: BD // CE

Vậy tứ giác BDEC là hình thang

Khi đó MA là đường trung bình của hình thang BDEC

Suy ra: \(MA\\ BD\Rightarrow MA\downarrow DE\)

Trong tam giác vuông ABC ta có: MA = MB = MC

Suy ra M là tâm đường tròn đường kính BC với MA là bán kính

Vậy DE là tiếp tuyến của đường tròn tâm M đường kính BC

Mysterious Person
24 tháng 6 2017 lúc 13:12

a) theo tính chất 2 tiếp tuyến cắt nhau

ta có : DAB = BAH và HAC = CAE

DAH + HAE = 2(BAH + HAC) = 2.90 = 180

vậy D , A , E thẳng hàng

Mysterious Person
24 tháng 6 2017 lúc 13:23

b) gọi M là trung diểm của BC

mà DA = AE = R

\(\Rightarrow\) MA là đường trung bình của hình thang BDEC nên MA // DB \(\Rightarrow\) MA \(\perp\) DE

mà MA = MB = MC nên MA là bán kính của đường tròn có đường kính BC

vậy DE là tiếp tuyến của đường tròn có đường kính BC

\(\Leftrightarrow\) DE tiếp xúc với đường tròn có đường kính BC (đpcm)