Tìm giá trị lớn nhất M của hàm số y = 2 sinx – 2 cosx -5.
A. M = 9 .
B. M = 2 2 − 5.
C. M = 7 .
D. M = - 2 2 − 5.
Tìm giá trị lớn nhất M của hàm số y = sin x + 2 cos x + 1 sin x+ cos x + 2 .
A. -2
B. -3
C. 3
D. 1
Đáp án D
Ta có y = s inx + 2 cos x + 1 s inx + cos x + 2 ⇔ y − 1 s inx + y − 2 cos x = 1 − 2 y 1 .
PT (1) có nghiệm ⇔ y − 1 2 + y − 2 2 ≥ 1 − 2 y 2 ⇔ 2 y 2 + 2 y − 4 ≤ 0 ⇔ − 2 ≤ y ≤ 1 ⇒ M = 1.
Cho hàm số y = sin x - cos x + 1 sin x + cos x + 2 . Giả sử hàm số có giá trị lớn nhất là M, giá trị nhỏ nhất là m. Khi đó giá trị của M+m là
A. 2
B. 4
C. 0
D. 1
Cho hàm số y = sin x - cos x + 1 sin x + cos x + 2 . Giả sử hàm số có giá trị lớn nhất là M, giá trị nhỏ nhất là m. Khi đó giá trị của M + m là
A. 2
B. 4
C. 0
D. 1
Cho hàm số y = sinx − cosx + 1 sinx + cosx − 2 . Giả sử hàm số có giá trị lớn nhất là M, giá trị nhỏ nhất là m. Khi đó giá trị của M+m là
A. 1
B. 4
C. 2
D. 0
Giá trị nhỏ nhất m và giá trị lớn nhất M của hàm số y = sin x + 2 cos x + 1 s i n x + cos x + 2 là
A. m = − 1 2 ; M = 1.
B. m = 1 ; M = 2.
C. m = − 2 ; M = 1.
D. m = − 1 ; M = 2.
Đáp án C
Đặt t = tan x 2 ta có: y = sin x + 2 cos x + 1 s i n x + cos x + 2
= 2 t 1 + t 2 + 2 1 − t 2 1 + t 2 + 1 2 t 1 + t 2 + 1 − t 2 1 + t 2 + 2 = − t 2 + 2 t + 3 t 2 + 2 t + 3
Tập các giá trị của y là tập các giá tri làm cho PT y = − t 2 + 2 t + 3 t 2 + 2 t + 3 ⇔ y + 1 t + 2 y − 1 t + 3 y − 1 = 0 có nghiệm với ẩn t
⇒ Δ ' = y − 1 2 − 3 y + 1 y − 1 = − 2 y 2 − 2 y + 4 ≥ 0 ⇒ − 2 ≤ y ≤ 1 ⇒ m = − 2 , M = 1
Giá trị nhỏ nhất m và giá trị lớn nhất M của hàm số y = sin x + 2 cos x + 1 sin x + cos x + 2 là
1/ tìm TXĐ chủa hàm số y = căn 1 - cosx /2 + sinx.
2/ tìm tập giá trị của hàm số y = 2-cos2x.
3/ Tìm giá trị lớn nhất và nhỏ nhất của các hàm số sau :
a) y=1 + 2sinx b)y=1 - 2cos^2x
4/ Tìm giá trị nhỏ nhất của hàm số y=tan^2x - 2tanx +3.
1. Không dịch được đề
2.
\(-1\le cos2x\le1\Rightarrow1\le y\le3\)
3.
a. \(-2\le2sinx\le2\Rightarrow-1\le y\le3\)
\(y_{min}=-1\) khi \(sinx=-1\Rightarrow x=-\dfrac{\pi}{2}+k2\pi\)
\(y_{max}=3\) khi \(sinx=1\Rightarrow x=\dfrac{\pi}{2}+k2\pi\)
b.
\(0\le cos^2x\le1\Rightarrow-1\le y\le2\)
\(y_{min}=-1\) khi \(cos^2x=1\Rightarrow x=k\pi\)
\(y_{max}=2\) khi \(cosx=0\Rightarrow x=\dfrac{\pi}{2}+k\pi\)
4.
\(y=\left(tanx-1\right)^2+2\ge2\)
\(y_{min}=2\) khi \(tanx=1\Rightarrow x=\dfrac{\pi}{4}+k\pi\)
Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số sau:
y=sinx - cosx -sin2x + 1
y=2( sinx + cosx )+4 sinx.cosx - 2
tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số
\(y=\dfrac{sinx+3cosx+1}{sinx-cosx+2}\)
\(ĐK:sinx-cosx\ne-2\)
\(< =>2y-1=sinx\left(1-y\right)+cosx\left(y+3\right)\)
Theo Bunhiacopxki:
\(\left[sinx\left(1-y\right)+cosx\left(y+3\right)\right]^2\)\(\le\left(sin^2x+cos^2x\right)\left[\left(1-y\right)^2+\left(y+3\right)^2\right]\)
\(< =>\left(2y-1\right)^2\le2y^2+4y+10\)
\(< =>2y^2-8y-9\le0\)
=> Bấm máy tìm Max, Min của y
(Sry máy tính của t bị ngáo không bấm ra)
\(\Rightarrow y.sinx-y.cosx+2y=sinx+3cosx+1\)
\(\Rightarrow\left(y-1\right)sinx-\left(y+3\right)cosx=1-2y\)
Theo điều kiện có nghiệm của pt lượng giác bậc nhất
\(\Rightarrow\left(y-1\right)^2+\left(y+3\right)^2\ge\left(1-2y\right)^2\)
\(\Leftrightarrow2y^2-8y-9\le0\)
\(\Rightarrow\dfrac{4-\sqrt{34}}{2}\le y\le\dfrac{4+\sqrt{34}}{2}\)
\(y_{max}=\dfrac{4+\sqrt{34}}{2}\) ; \(y_{min}=\dfrac{4-\sqrt{34}}{2}\)
\(y=\dfrac{sinx+3cosx+1}{sinx-cosx+2}\)
\(\Leftrightarrow y.sinx-y.cosx+2y=sinx+3cosx+1\)
\(\Leftrightarrow\left(y-1\right)sinx-\left(y+3\right).cosx=1-2y\)
Phương trình có nghiệm khi \(\left(y-1\right)^2+\left(y+3\right)^2\ge\left(1-2y\right)^2\)
\(\Leftrightarrow y^2-2y+1+y^2+6y+9\ge4y^2-4y+1\)
\(\Leftrightarrow2y^2-8y-9\le0\)
\(\Leftrightarrow\dfrac{4-\sqrt{34}}{2}\le y\le\dfrac{4+\sqrt{34}}{2}\)