Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
bui duy tuan
Xem chi tiết
Nguyên Nguyễn Khôi
Xem chi tiết
Nguyên Nguyễn Khôi
8 tháng 1 2016 lúc 9:19

a^2 + b^2 + ab + bc+ ac < 0

<=> a^2 + b^2 + c^2 +ab + bc+ ac < c^2

<=> 2(a^2 + b^2 + c^2 +ab + bc+ ac) < 2c^2

<=> (a+b+c)^2 + a^2 + b^2 + c^2 < 2 c^2

Mà (a+b+c)^2 >= 0 nên suy ra a^2 + b^2 + c^2 < c^2

suy ra dpcm

nhầm a^2 + b^2 + c^2 < 2c^2 và suy ra dpcm

Big City Boy
Xem chi tiết
✿✿❑ĐạT̐®ŋɢย❐✿✿
10 tháng 3 2021 lúc 13:01

Ta có : \(a^2+b^2\ge2ab\Rightarrow a^2+b^2-ab\ge ab\)

\(\Rightarrow\dfrac{1}{a^2-ab+b^2}\le\dfrac{1}{ab}=\dfrac{abc}{ab}=c\) ( do $abc=1$ )

Tương tự ta có :

\(\dfrac{1}{b^2-bc+c^2}\le a\)

\(\dfrac{1}{c^2-ab+a^2}\le b\)

Cộng vế với vế các BĐT trên có :

\(\dfrac{1}{a^2-ab+b^2}+\dfrac{1}{b^2-bc+c^2}+\dfrac{1}{c^2-ac+a^2}\le a+b+c\)

Dấu "=" xảy ra khi $a=b=c$

Nguyễn Việt Lâm
10 tháng 3 2021 lúc 13:01

\(VT=\dfrac{1}{a^2+b^2-ab}+\dfrac{1}{b^2+c^2-bc}+\dfrac{1}{c^2+a^2-ca}\)

\(VT\le\dfrac{1}{2ab-ab}+\dfrac{1}{2bc-bc}+\dfrac{1}{2ca-ca}=\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=\dfrac{a+b+c}{abc}=a+b+c\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Mai Văn Tài
Xem chi tiết
LovE _ Khánh Ly_ LovE
1 tháng 1 2017 lúc 20:39

Vi a^2+b^2+c^2=1 
=>-1=<a,b,c=<1 
=>(1+a)(1+b)(1+c)>=0 
=>1+abc+ab+bc+ca+a+b+c>=0 (1*) 
Lại có (a+b+c+1)^2/2>=0 
=>[a^2+b^2+c^2+1+2a+2b+2c+2ab+2bc+2ca 
]/2>=0 
=>[2+2a+2b+2c+2ab+2bc+2ca]/2>=0 (Thay a^2+b^2+c^2=1) 
=>1+a+b+c+ab+bc+ca>=0 (2*) 
tu (1*)(2*) ta co abc+2(1+a+b+c+ab+bc+ca)>=0 
dau = xay ra <=>a+b+c=-1 va a^2+b^2+c^2=1 
<=>a=0,b=0,c=-1 va cac hoan vi cua no

LovE _ Khánh Ly_ LovE
1 tháng 1 2017 lúc 20:35

Vì a^2+b^2+c^2=1 
=>-1=<a,b,c=<1 
=>(1+a)(1+b)(1+c)>=0 
=>1+abc+ab+bc+ca+a+b+c>=0 (1*) 
Lại có (a+b+c+1)^2/2>=0 
=>[a^2+b^2+c^2+1+2a+2b+2c+2ab+2bc+2ca 
]/2>=0 
=>[2+2a+2b+2c+2ab+2bc+2ca]/2>=0 (Thay a^2+b^2+c^2=1) 
=>1+a+b+c+ab+bc+ca>=0 (2*) 
tu (1*)(2*) ta co abc+2(1+a+b+c+ab+bc+ca)>=0 
dau = xay ra <=>a+b+c=-1 va a^2+b^2+c^2=1 
<=>a=0,b=0,c=-1 và các hoan vi của nó

Toàn Quyền Nguyễn
1 tháng 1 2017 lúc 20:37



Vì a^2+b^2+c^2=1 
=>-1=<a,b,c=<1 
=>(1+a)(1+b)(1+c)>=0 
=>1+abc+ab+bc+ca+a+b+c>=0 (1*) 
Lại có (a+b+c+1)^2/2>=0 
=>[a^2+b^2+c^2+1+2a+2b+2c+2ab+2bc+2ca 
]/2>=0 
=>[2+2a+2b+2c+2ab+2bc+2ca]/2>=0 (Thay a^2+b^2+c^2=1) 
=>1+a+b+c+ab+bc+ca>=0 (2*) 
tu (1*)(2*) ta co abc+2(1+a+b+c+ab+bc+ca)>=0 
dau = xay ra <=>a+b+c=-1 va a^2+b^2+c^2=1 
<=>a=0,b=0,c=-1 và các hoan vi của nó

Truong thuy vy
Xem chi tiết
KAl(SO4)2·12H2O
14 tháng 3 2018 lúc 23:08

Do: \(a^2+b^2+c^2=1\text{ nen }a^2\le1,b^2\le1,c^2\le1\)

\(\Rightarrow a\ge-1;b\ge-1;c\ge-1\)

\(\Rightarrow\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge0\)

\(\Rightarrow1+a+b+c+ab+bc+ca+abc\ge0\)

Cần C/m:

\(1+a+b+c+ab+bc+ca\ge0\)

Ta có: 

\(1+a+b+c+ab+bc+ca\ge0\)

\(\Leftrightarrow a^2+b^2+c^2+ab+bc+ca+a+b+c\ge0\)

\(\Leftrightarrow2a^2+2b^2+2c^2+2\left(a+b+c\right)+2ab+2bc+2ca+abc\ge0\)

\(\Leftrightarrow\left(a+b+c\right)^2+2\left(a+b+c\right)+1\ge0\)

\(\Leftrightarrow\left(a+b+c+1\right)^2\ge0\left(\text{luon dung}\right)\)

=> ĐPCM

Arima Kousei
14 tháng 3 2018 lúc 22:55

Bấm vào câu hỏi tương tự 

hoặc lên Học24h 

Hồ Thị Hà Giang
Xem chi tiết
gấukoala
Xem chi tiết
Nguyễn Văn Vũ
Xem chi tiết
alibaba nguyễn
29 tháng 6 2017 lúc 11:25

\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ac+a^2}\)

\(=\frac{a^4}{a^3+a^2b+ab^2}+\frac{b^4}{b^3+b^2c+bc^2}+\frac{c^4}{c^3+ac^2+ca^2}\)

\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^3+b^3+c^3+ab\left(a+b\right)+bc\left(b+c\right)+ca\left(a+c\right)}\)

\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)\left(a+b+c\right)}=\frac{a^2+b^2+c^2}{a+b+c}\)

\(\ge\frac{\frac{\left(a+b+c\right)^2}{3}}{a+b+c}=\frac{a+b+c}{3}\)

linh angela nguyễn
Xem chi tiết
Nguyễn Xuân Tiến 24
4 tháng 1 2018 lúc 20:44

\(\left(a+b+c\right)^2=a^2+b^2+c^2\Leftrightarrow2\left(ab+bc+ca\right)=0\)

\(\Leftrightarrow ab+bc+ca=0\Leftrightarrow\dfrac{ab+bc+ca}{abc}=0\)\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\) (1)

Ta có: \(a+b+c=0\Rightarrow a^3+b^3+c^3=3abc\) (Bn thự cm nhé)

(1) \(\Rightarrow\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{3}{abc}\Leftrightarrow abc\left(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}\right)=3\)

\(\Leftrightarrow\dfrac{bc}{a^2}+\dfrac{ac}{b^2}+\dfrac{ab}{c^2}=3\left(đpcm\right)\)