Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 3 2018 lúc 2:51

Ta có; x < A ⇔ - A < x < A .

Suy ra; nếu a < b  thì  - b < a < b ⇒ - b ≤ a ≤ b

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 12 2017 lúc 16:16

Nếu a, b là những số thực và  a ≤ b   thì  a 2 ≤ b 2 ⇔ a 2 ≤ b 2

Nấm Chanel
Xem chi tiết
Bùi Nhất Duy
13 tháng 8 2017 lúc 15:02

Đặt A=\(\dfrac{b+c+5}{1+a}+\dfrac{c+a+4}{2+b}+\dfrac{a+b+3}{3+c}\)

Ta có :A+3=\(\left(\dfrac{b+c+5}{1+a}+1\right)+\left(\dfrac{c+a+4}{2+b}+1\right)+\left(\dfrac{a+b+3}{3+a}+1\right)\)

=\(\dfrac{a+b+c+6}{1+a}+\dfrac{a+b+c+6}{2+b}+\dfrac{a+b+c+6}{3+c}\)

=\(\left(a+b+c+6\right)\left(\dfrac{1}{1+a}+\dfrac{1}{2+b}+\dfrac{1}{3+c}\right)\)

=\([\left(a+1\right)+\left(b+2\right)+\left(c+3\right)|\left(\dfrac{1}{a+1}+\dfrac{1}{b+2}+\dfrac{1}{c+3}\right)\)

Áp dụng bất đẳng thức AM-GM dạng \(\left(x+y+z\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge9\)( với x,y,z>0)

Ta có :A+3\(\ge9\)\(\Rightarrow A\ge6\)

Dấu "=" xảy ra khi a=3,b=2,c=1

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
12 tháng 2 2018 lúc 8:24

Với mọi x ta luôn có: - x ≤ x

Cô nàng Song Ngư
Xem chi tiết
Nhân Thiện Hoàng
6 tháng 2 2018 lúc 21:17

kho qua

Kaori Miyazono
6 tháng 2 2018 lúc 21:27

Giả sử x,y là các số nguyên thoả mãn 9a+b=-21

Ta thấy 9a chia hết cho 3 và -21 chia hết cho 3

Khi đó b chia hết cho 3

Đặt \(b=3k\left(k\in Z\right)\)

Thay b = 3k và 9a + b = -21 ta được 

\(9a+3k=-21\Rightarrow9a=-21-3k\Rightarrow a=\frac{-21-3k}{9}=\frac{-7-k}{3}\)

Vậy....

b, Làm tương tự

Phan Hoàng Quốc Khánh
Xem chi tiết
Upin & Ipin
3 tháng 11 2019 lúc 20:59

neu de bai bai 1 la tinh x+y thi mik lam cho

Khách vãng lai đã xóa
Thanh Tùng DZ
4 tháng 11 2019 lúc 17:06

đăng từng này thì ai làm cho 

Khách vãng lai đã xóa
Kiệt Nguyễn
13 tháng 2 2020 lúc 14:56

We have \(P=\frac{x^4+2x^2+2}{x^2+1}\)

\(\Rightarrow P=\frac{x^4+2x^2+1+1}{x^2+1}\)

\(=\frac{\left(x^2+1\right)^2+1}{x^2+1}\)

\(=\left(x^2+1\right)+\frac{1}{x^2+1}\)

\(\ge2\sqrt{\frac{x^2+1}{x^2+1}}=2\)

(Dấu "="\(\Leftrightarrow x=0\))

Vậy \(P_{min}=2\Leftrightarrow x=0\)

Khách vãng lai đã xóa
Sơn Khuê
Xem chi tiết
Nguyễn Huy Thắng
21 tháng 1 2019 lúc 20:49

Tu \(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ca}{c+a}\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{c}+\dfrac{1}{a}\)

Hay \(\dfrac{1}{a}=\dfrac{1}{b}=\dfrac{1}{c}\Leftrightarrow a=b=c\)

Thay vao M ta co: \(M=\dfrac{a\cdot a+a\cdot a+a\cdot a}{a^2+a^2+a^2}=\dfrac{2019}{2019}=\dfrac{2018}{2018}=\dfrac{2017}{2017}=\dfrac{2016}{2015+1}=1\)

nguyễn quốc hoàn
Xem chi tiết
Nguyễn Thị Thùy Nhung
Xem chi tiết
Nguyễn Hoàng Minh
22 tháng 11 2021 lúc 11:12

\(a+b=1\Leftrightarrow b=1-a\\ \Leftrightarrow P=a^2+1-a=\left(a-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\\ P_{min}=\dfrac{3}{4}\Leftrightarrow a=\dfrac{1}{2}\Leftrightarrow b=\dfrac{1}{2}\)