Với giá trị nào của m thì đồ thị hàm số y = 3 x – 2 m và y = − x + 1 – m cắt nhau tại một điểm trên trục tung?
A. m = 1
B. m = 0
C. m = − 1
D. m = 2
Cho hai hàm số y = (m - 1)x + 3 và y = (3 - m)x + 1, Với giá trị nào của m thì đồ thị của hai hàm só là hai đường thẳng song song với nhaub, Với giá trị nào của m thì đồ thị của 2 hàm số là hai đường thẳng cắt nhau
a: Để hai đường thẳng song song thì m-1=3-m
=>2m=4
hay m=2
\(\text{//}\Leftrightarrow m-1=3-m\Leftrightarrow m=2\\ \cap\Leftrightarrow m-1\ne3-m\Leftrightarrow m\ne2\)
Cho 2 hàm số bậc nhất y = (3m - 1)x + 2 và y = (m + 3)x +1
a) Với giá trị nào của m thì đồ thị của 2 hàm số là 2 đường thẳng song song với nhau?
b) Với giá trị nào của m thì đò thị của 2 hàm số là 2 đường thẳng cắt nhau?
\(a,\Leftrightarrow3m-1=m+3\Leftrightarrow2m=4\Leftrightarrow m=2\\ b,\Leftrightarrow3m-1\ne m+3\Leftrightarrow m\ne2\)
cho hàm số: y = (m-2)x + m+1 (1)
a) với giá trị nào của m thì hs (1) là hàm số bậc nhất
b) với giá trị nào của m thì hs (1) đồng biến
c) vẽ đồ thị hàm số m =1
d) với giá trị nào của m thì đồ thị hàm số (1) đi qua A(2;1)
e) với giá trị nào của m thì đồ thị hàm số (1) song song với y = 3x+2
f) với giá trị nào của m thì đồ thị hàm số (1) tạo với trục Ox một góc tù?
g) với giá trị nào của m thì đồ thị hàm số (1) cắt đường thẳng y = 5x+6 tại trục tung
h) với m =3 tính góc tạo thành bởi đồ thị hàm số với trục hoành và tính khoảng cách từ gốc tọa độ đến đường thẳng
h: Khi m=3 thì \(y=\left(3-2\right)x+3+1=x+4\)
Gọi \(\alpha\) là góc tạo bởi đồ thị hàm số y=x+4 với trục Ox
\(tan\alpha=a=1\)
=>\(\alpha=45^0\)
y=x+4
=>x-y+4=0
Khoảng cách từ O(0;0) đến đường thẳng x-y+4=0 là:
\(\dfrac{\left|0\cdot1+0\cdot\left(-1\right)+4\right|}{\sqrt{1^2+\left(-1\right)^2}}=\dfrac{4}{\sqrt{2}}=2\sqrt{2}\)
cho hàm số: y = (m-2)x + m+1 (1)
a) với giá trị nào của m thì hs (1) là hàm số bậc nhất
b) với giá trị nào của m thì hs (1) đồng biến
c) vẽ đồ thị hàm số m =1
d) với giá trị nào của m thì đồ thị hàm số (1) đi qua A(2;1)
e) với giá trị nào của m thì đồ thị hàm số (1) song song với y = 3x+2
f) với giá trị nào của m thì đồ thị hàm số (1) tạo với trục Ox một góc tù?
g) với giá trị nào của m thì đồ thị hàm số (1) cắt đường thẳng y = 5x+6 tại trục tung
h) với m =3 tính góc tạo thành bởi đồ thị hàm số với trục hoành và tính khoảng cách từ gốc tọa độ đến đường thẳng
a: Để (1) là hàm số bậc nhất thì \(m-2\ne0\)
=>\(m\ne2\)
b: Để (1) đồng biến thì m-2>0
=>m>2
c: Khi m=1 thì \(y=\left(1-2\right)x+1+1=-x+2\)
d: Thay x=2 và y=1 vào (1), ta được:
\(2\left(m-2\right)+m+1=1\)
=>2m-4+m=0
=>3m-4=0
=>3m=4
=>\(m=\dfrac{4}{3}\)
e: Để (1)//y=3x+2 thì \(\left\{{}\begin{matrix}m-2=3\\m+1< >2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m=3\\m< >1\end{matrix}\right.\)
=>m=3
f: Để (1) tạo với trục Ox một góc tù thì m-2<0
=>m<2
g: Thay x=0 vào y=5x+6, ta được:
\(y=5\cdot0+6=6\)
Thay x=0 và y=6 vào (1), ta được:
\(0\left(m-2\right)+m+1=6\)
=>m+1=6
=>m=5
a) với những giá trị nào của m thì hàm số y = (m + 6)x - 7 đồng biến?
b) với những giá trị nào của k thì hàm số y = (-k + 9)x + 100 nghịch biến?
c) với những giá trị nào của m thì đồ thị của hàm số y = 12x + (5 + m) và y = -3x + (3 - m) cắt nhau tại một điểm trên trục tung
a: Để hàm số y=(m+6)x-7 đồng biến thì m+6>0
=>m>-6
b: Để hàm số y=(-k+9)x+100 nghịch biến thì -k+9<0
=>-k<-9
=>k>9
c: Để hai đồ thị hàm số y=12x+(5+m) và y=-3x+(3-m) cắt nhau tại một điểm trên trục tung thì
\(\left\{{}\begin{matrix}m+5=3-m\\12\ne-3\left(đúng\right)\end{matrix}\right.\)
=>m+5=3-m
=>2m=-2
=>m=-1
Câu 1. Với giá trị nào của m thì đồ thị hai hàm số y=2x+3 và y= (m-1)x+3 là hai đường thẳng trùng nhau
A. m=-1 B. m=2 C. m=\(\dfrac{-1}{2}\) D. m= 3
Câu 2 Cho hàm số \(y=-mx+2\) . Giá trị của m để đồ thị hàm số trên cắt đường thẳng y=x+3 tại điểm có hoành độ bằng 1 là
A. m= -2 B. m = 4 C. m= -3 D. m = 4
Cho hàm số : y = (m + 5)x+ 2m – 10
a. Với giá trị nào của m thì y là hàm số bậc nhất
b. Với giá trị nào của m thì hàm số đồng biến.
c. Tìm m để đồ thị hàm số điqua điểm A(2; 3)
d. Tìm m để đồ thị cắt trục tung tại điểm có tung độ bằng 9.
e. Tìm m để đồ thị cắt trục hoành tại điểm có hoành độ bằng 10.
f. Tìm m để đồ thị hàm số song song với đồ thị hàm số y = 2x -1
g*. Chứng minh đồ thị hàm số luôn đi qua 1 điểm cố định với mọi m.
h*. Tìm m để khoảng cách từ O tới đồ thị hàm số là lớn nhất
ll)BT
B1:Cho hàm số y=(m+5)x+2m-10
a)Với giá trị nào của m thì y là hàm số bậc nhất
b)Với giá trị nào của m thì y là hàm số đồng biến
c)Tìm m để đồ thị hàm số đi qua điểm A(2;3)
d)Tìm m để đồ thị cắt trục tung tại diểm có tung độ = 9
e)Tìm m để đồ thị đi qua điểm 10 trên trục hoành
f)Tìm m để đồ thị hàm số song song với đồ thị hàm số y=2x-1
g)Chúng minh đồ thị hàm số luôn đi qua 1 điểm cố định với mọi m.
h)Tìm m để Đường thẳng d qua gốc tọa độ
Help
B1:
b) Để y là hàm số đồng biến thì m+5>0
hay m>-5
B1:
Đặt (d): y=(m+5)x+2m-10
c) Để đồ thị hàm số đi qua điểm A(2;3) thì
Thay x=2 và y=3 vào (d), ta được:
\(2\left(m+5\right)+2m-10=3\)
\(\Leftrightarrow2m+10+2m-10=3\)
\(\Leftrightarrow4m=3\)
hay \(m=\dfrac{3}{4}\)
B1:
a) Để y là hàm số bậc nhất thì \(m+5\ne0\)
hay \(m\ne-5\)
Cho 2 hàm số bậc nhất y= (m-2/3) x+1 và y= ( 2-m)x-3 với giá trị nào của m thì đồ thị 2 hàm số tren cắt nhau tại điểm có hoành độ bằng 4
với giá trị nào của m thì đồ thị của các hàm số y=-x+(2m-3) và y=x+(\(\sqrt{2}\).m -1) cắt nhau tại một điểm trên trục tung
Để hai đường thẳng y=-x+(2m-3) và \(y=x+\left(\sqrt{2}m-1\right)\) cắt nhau tại một điểm trên trục tung thì
\(\left\{{}\begin{matrix}2m-3=\sqrt{2}m-1\\-1\ne1\left(đúng\right)\end{matrix}\right.\)
=>\(m\left(2-\sqrt{2}\right)=-1+3=2\)
=>\(m=\dfrac{2}{2-\sqrt{2}}=2+\sqrt{2}\)