Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 1 2019 lúc 10:09

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 9 2018 lúc 9:24

Giải bài 3 trang 163 sgk Đại Số 11 | Để học tốt Toán 11

Buddy
Xem chi tiết
Hà Quang Minh
22 tháng 9 2023 lúc 14:51

a) Với bất kì \({x_0} \in \mathbb{R}\), ta có:

\(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{x - {x_0}}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} 1 = 1\)

Vậy \(f'\left( x \right) = {\left( x \right)^\prime } = 1\) trên \(\mathbb{R}\).

b) Ta có:

\(\begin{array}{l}{\left( {{x^2}} \right)^\prime } = 2{\rm{x}}\\{\left( {{x^3}} \right)^\prime } = 3{{\rm{x}}^2}\\...\\{\left( {{x^n}} \right)^\prime } = n{{\rm{x}}^{n - 1}}\end{array}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 4 2018 lúc 15:10

Giải bài 4 trang 169 sgk Đại Số 11 | Để học tốt Toán 11

Buddy
Xem chi tiết
Hà Quang Minh
14 tháng 8 2023 lúc 2:12

\(a,y'=\left(x^3-4x^2+5\right)'=3x^2-8x\\ b,y''=\left(3x^2-8x\right)'=6x-8\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 6 2019 lúc 17:51

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
14 tháng 3 2018 lúc 14:20

Đáp án: B.

Xét f(x) = x 3  + m x 2  + x - 5

Vì Giải sách bài tập Toán 12 | Giải sbt Toán 12

và f(0) = -5 với mọi m ∈ R cho nên phương trình f(x) = 0 luôn có nghiệm dương.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 10 2017 lúc 6:37

Đáp án: B.

Xét f(x) = x 3  + m x 2  + x - 5

Vì Giải sách bài tập Toán 12 | Giải sbt Toán 12

và f(0) = -5 với mọi m ∈ R cho nên phương trình f(x) = 0 luôn có nghiệm dương.

Nguyễn Hải Vân
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 9 2021 lúc 15:46

1.

\(y'=\left(\dfrac{x}{lnx}\right)'.3^{\dfrac{x}{lnx}}.ln3=\dfrac{lnx-1}{ln^2x}.3^{\dfrac{x}{lnx}}.ln3\)

2.

\(y'=\left(tanx\right)'.tanx+\left(tanx\right)'.\dfrac{1}{tanx}=\dfrac{tanx}{cos^2x}+\dfrac{1}{tanx.cos^2x}\)

3.

\(y=\left(ln2x\right)^{\dfrac{2}{3}}\Rightarrow y'=\left(ln2x\right)'.\dfrac{2}{3}.\left(ln2x\right)^{-\dfrac{1}{3}}=\dfrac{1}{3x\sqrt[3]{ln2x}}\)