Dùng kí hiệu ∀ hoặc ∃ để viết các mệnh đề sau
Có một số hữu tỉ nhỏ hơn nghịch đảo của nó;
Dùng các kí hiệu để viết các câu sau và viết mệnh đề phủ định của nó.
a) Có một số hữu tỉ mà nghịch đảo của nó lớn hơn chính nó.
\(a,\exists x\in Q:x< \dfrac{1}{x}\)
Dùng kí hiệu \(\forall\) hoặc \(\exists\) để viết các mệnh đề sau :
a) Có một số nguyên bằng bình phương của nó
b) Mọi số (thực) cộng với 0 đều bằng chính nó
c) Có một số hữu tỉ nhỏ hơn nghịch đảo của nó
d) Mọi số tự nhiên đều lớn hơn 0
a) \(\exists a\in\mathbb{Z}:a=a^2\)
b) \(\forall x\in\mathbb{R}:x+0=x\)
c) \(\exists x\in\mathbb{Q}:x< \dfrac{1}{x}\)
d) \(\forall n\in\mathbb{N}:n>0\)
Dùng ký hiệu ∀ hoặc ∃ đểviết các mệnh đềsau:
a)Có 1 số nguyên không chia hết cho chính nó.
b)Mọi số thực cộng với 0 đều bằng chính nó.
c)Có một số hữu tỷ nhỏ hơn nghịch đảo của nó.
Dùng kí hiệu ∀ và ∃ để viết mệnh đề sau rồi lập mệnh đề phủ định và xét tính đúng sai của mệnh đề đó.
Mọi số thực khác 0 nhân với nghịch đảo của nó đều bằng 1
∀ x ∈ R 0 : x . 1 / x = 1 (đúng)
Phủ định là ∃ x ∈ R 0 : x . 1 / x ≠ 1 (sai)
Dùng kí hiệu ∀ hoặc ∃ để viết các mệnh đề sau
Có một số nguyên bằng bình phương của nó ;
Dùng kí hiệu \(\forall\) và \(\exists\) để viết mệnh đề sau rồi lập mệnh đề phủ định và xét tính đúng sai của các mệnh đề đó :
a) Mọi số thực cộng với số đối của nó đều bằng 0
b) Mọi số thực khác 0 nhân với nghịch đảo của nó đều bằng 1
c) Có một số thực bằng số đối của nó
a) \(\forall x\in\mathbb{R}:x+\left(-x\right)=0\) (đúng)
Phủ định là \(\exists x\in\mathbb{R}:x+\left(-x\right)\ne0\) (sai)
b) \(\forall x\in\mathbb{R}\)\ \(\left\{0\right\}:x.\dfrac{1}{x}=1\) (đúng
Phủ định là \(\exists x\in\mathbb{R}\)\ \(\left\{0\right\}:x.\dfrac{1}{x}\ne1\) (sai)
c) \(\exists x\in R:x=-x\) (đúng)
Phủ định là \(\forall x\in\mathbb{R}:x\ne-x\) (sai)
Dùng kí hiệu ∀ hoặc ∃ để viết các mệnh đề sau:
Có một số nguyên không chia hết cho chính nó
Dùng kí hiệu \(\forall ,\exists \) để viết các mệnh đề sau:
P: “Mọi số tự nhiên đều có bình phương lớn hơn hoặc bằng chính nó”
Q: “Có một số thực cộng với chính nó bằng 0”
P: "\(\forall n \in \mathbb N,\;{n^2} \ge n".\)
Q: "\(\exists \;a \in \mathbb R,\;a + a = 0".\)
Dùng kí hiệu ∀ hoặc ∃ để viết các mệnh đề sau
Mọi số (thực) cộng với 0 đều bằng chính nó ;