Cho tam giác ABC có AB = 9cm, AC = 12cm, BC = 7cm. Chứng minh B ^ = 2 C ^ .
Cho tam giác ABC có AB = 9cm, AC = 12cm, BC = 7cm. Chứng minh góc B = 2 góc C.
Cho tam giác ABC có AB =9cm, AC =12cm, BC = 15cm. Phân giác B và C cắt nhau tại I
a. Chứng minh: tam giác ABC vuông
b.Kẻ ID vuông với AB; IE vuông với BC; IF vuông với AC. Chứng minh ID =IF
c. CMR : AB + AC - BC = 2AD
C/m
Có AB = 9cm (gt)
AC = 12cm (gt)
BC = 15cm (gt)
=> BC là cạnh lớn nhất.
Có 52 = 225
Có 92 + 122 = 81 + 144 = 255
=> 92 + 122 = 152
=> AB2 + AC2 = BC2
=> \(\bigtriangleup\)ABC vuông tại A
b. Có phân giác góc B cắt góc B tại I
=> ID = IF (định lí)
Cho tam giác ABC có AB=4,5cm, Ac = 6cm. Trên các tia AB, AC lần lượt lấy các điểm D vfa E sao cho AD=12cm, AE=9cm
a) Chứng minh tam giác ABC ~ tam giác ADE
b) giả sử BC=7cm. Tính độ dài đoạn thẳng DE
c) gọi K là giao điểm của BC và DC. Chứng minh: Tam giác KCE ~ tam giác KDB và góc CBE= GÓC CDE
giúp với các bn
a) Xét tam giác ABC và tam giác AED có :
\(\widehat{A}\)chung
\(\frac{AB}{AE}=\frac{AC}{AD}\left(=\frac{1}{2}\right)\)
Suy ra tam giác ABC ~ tam giác AED ( c-g-c )
b) Từ tam giác ABC ~ tam giác ADE (cmt) ta có :
\(\frac{BC}{ED}=\frac{AB}{AE}=\frac{1}{2}\Rightarrow ED=2BC=2\cdot7=14\left(cm\right)\)
c) Xét tam giác ADC và tam giác AEB có :
\(\widehat{A}\)chung
\(\frac{AD}{AE}=\frac{AC}{AB}\left(=\frac{4}{3}\right)\)
Suy ra tam giác ADC ~ tam giác AEB ( c-g-c )
\(\Rightarrow\widehat{BDK}=\widehat{CEK}\)
Xét tam giác KCE và tam giác KDB có :
\(\widehat{BKD}=\widehat{CKE}\)(2 góc đối đỉnh)
\(\widehat{BDK}=\widehat{CEK}\left(cmt\right)\)
Suy ra tam giác KCE ~ tam giác KDB ( g-g )
Từ tam giác ABC ~ tam giác AED (cmt) suy ra \(\widehat{ABC}=\widehat{AED}\)
Từ tam giác KCE ~ tam giác KDB (cmt) suy ra \(\widehat{KBD}=\widehat{KCE}\)
Ta có \(\widehat{CDE}=180"-\widehat{CED}-\widehat{DCE}=180"-\widehat{ABC}-\widehat{DBK}\)(1)
Lại có \(\widehat{CBE}=180"-\widehat{ABC}-\widehat{DBK}\)(2)
Từ (1) và (2) suy ra \(\widehat{CBE}=\widehat{CDE}\)
\(\RightarrowĐPCM\)
Cho Tam giác ABC vuông tại A có AB=9cm, AC=12cm , đường cao AH a) chứng minh: tam giác abh ~ tam giác cba b) tính BC;AH c) Tia phân giác góc B cắt AC tại D.Chứng minh: AD.AC=AH.DC
a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có
góc B chung
=>ΔABH đồng dạng với ΔCBA
b: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)
AH=9*12/15=7,2cm
c: AD là phân giác
=>AD/DC=BA/BC=AH/AC
=>AD*AC=AH*DC
cho tam giác ABC có AB=9cm; BC=7cm; CA=12cm. Chứng minh: góc B= 2* góc C
Hướng dẫn :
Kẻ phân giác góc B cắt AC tại D. Dùng t/c đường phân giác tìm độ dài DC và BD => Tam giác DCB cân tại D.Vậy Góc C = góc DBC=1/2 ABC
cho tam giác ABC vuông tại A có AB=9cm, AC=12cm. Kẻ đường cao AH và đường phân giác AI của tam giác ABC a) chứng minh tam giác HBA ~ tam giác ABC b) tính độ dài BC,BI c) kẻ HD vuông góc AB và HE vuông góc AC (D thuộc AB, E thuộc AC). chứng minh tam giác AED~ tam giác ABC
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
Do đó ΔHBA\(\sim\)ΔABC
b: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)
c: Xét ΔAHB vuông tại H có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
hay AD/AC=AE/AB
=>ΔADE\(\sim\)ΔACB
Cho tam giác ABC có AB=7cm, AC+9cm và BC=12cm. AD là phân giác của tam giác ABC. CM tam giác ABC đồng dngj với tam giac DAC
cho tam giác ABC vuông tại A có AB=9cm,AC=12cm,đường cao AH a/ chứng minh tam giác ABC đồng dạng với tam giác HBA . Tính BC,AH. b/ kẻ HM vuông góc với AB tại M. chứng minh: HM^2=MA*MB c/ MC cắt AH tại I , đường thẳng qua I và song song với AC cắt AB,BC lần lượt tại E,F . CM: IF=IE
MỌI NGƯỜI GIÚP MÌNH VỚI Ạ!!!
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
\(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)
AH=9*12/15=7,2cm
b: ΔHAB vuông tại H có HM vuông góc AB
nên MH^2=MA*MB
Cho tam giác ABC có AB=9cm AC=12cm BC=15cm
a) Chứng minh tam giác ABC vuông
b) Đường phân giác của góc B cắt AC tại D, tính AD và DC.
c) Đường cao AH cắt BD tại I, chứng minh IH.BD=IA.IB
d) Chứng minh tam giác AID cân.
a: BC^2=AB^2+AC^2
=>ΔABC vuông tại A
b: BD là phân giác
=>AD/AB=CD/BC
=>AD/3=CD/5=(AD+CD)/(3+5)=12/8=1,5
=>AD=4,5cm; CD=7,5cm
d: góc ADI=90 độ-góc ABD
góc AID=góc BIH=90 độ-góc DBC
mà góc ABD=góc DBC
nên góc ADI=góc AID
=>ΔAID cân tại A