Cho tam giác DEF và tam giác HKG có D ^ = H ^ , E ^ = K ^ , DE=HK. Biết F ^ = 80 o . Số đo góc G là:
A. 70 °
B. 80 °
C. 90 °
D. 100 °
Cho tam giác DEF và tam giác HKG có D ^ = H ^ , E ^ = K ^ ,DE=KG. Biết F ^ = 75 o . Số đo góc H là:
A. 70 °
B. 75 °
C. 90 °
D. 100 °
Cho tam giác DEF và tam giác HKG có: DE=HK, EF=KG, E ^ = K ^ . Biết D ^ = 70 ° , số đo góc H là
A. 70
B. 80
C. 90
D. 100
Cho tam giác DEF và tam giác HKG có: DE=HK, E ^ = K ^ , RF=KG. Biết D ^ = 60 o . Số đo góc H là:
A. 60 °
B. 80 °
C. 90 °
D. 100 °
Cho tam goác DEF và tam giác HKG có DE=HK, E ^ = K ^ ,EF=KG, biết D ^ = 70 o . Số đo góc H là :
A. 70 °
B. 80 °
C. 90 °
D. 100 °
Câu 1.Cho tam giác DEF và tam giác HIK có DE=HI và EF=HK cần thêm một điều kiện gì để tam giác DEF và tam giác HIK bằng nhau theo trường hợp cạnh góc cạnh A. D=K B. E=góc I C. E=H D. Góc F=K Câu 2. Cho tam giác ABC bằng MNP biết AB=5cm MP=7cm chu vi tam giác ABC =22cm độ dài đoạn BC, NP là A. NP=BC=9cm B.NP=BC=10cm C. NP=BC=11cm D. NP=9cm, BC =10cm
Trong mặt phẳng Oxy, cho tam giác DEF có tọa độ các đỉnh \(D(2;2),E(6;2)\) và \(F(2;6)\)
a) Tìm tọa độ điểm H là chân đường vuông cao của tam giác DEF kẻ từ D
b) Giải tam giác DEF
a) Ta có: \(\overrightarrow {EF} = \left( { - 2;4} \right)\)
Gọi tọa độ điểm H là \(\left( {x;y} \right)\) ta có \(\overrightarrow {DH} = \left( {x - 2;y - 2} \right),\overrightarrow {EH} = \left( {x - 6;y - 2} \right)\)
H là chân đường cao nên \(\overrightarrow {DH} \bot \overrightarrow {EF} \)
\(\begin{array}{l}\overrightarrow {DH} \bot \overrightarrow {EF} \Leftrightarrow \left( {x - 2} \right).\left( { - 2} \right) + \left( {y - 2} \right).4 = 0\\ \Leftrightarrow - 2x + 4y - 4 = 0\end{array}\) (1)
Hai vectơ \(\overrightarrow {EH} ,\overrightarrow {EF} \) cùng phương
\( \Leftrightarrow \left( {x - 6} \right).( - 2) - \left( {y - 2} \right).4 = 0 \Leftrightarrow - 2x - 4y + 20 = 0\) (2)
Từ (1) và (2) ta có hệ phương trình
\(\left\{ \begin{array}{l} - 2x + 4y - 4 = 0\\ - 2x - 4y + 20 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 4\\y = 3\end{array} \right.\)
Vậy \(H(4;3)\)
b) Ta có: \(\overrightarrow {DE} = (4;0),\overrightarrow {DF} = (0;4),\overrightarrow {EF} = ( - 4;4)\)
Suy ra: \(DE = \left| {\overrightarrow {DE} } \right| = \sqrt {{4^2} + {0^2}} = 4,DF = \left| {\overrightarrow {DF} } \right| = \sqrt {{0^2} + {4^2}} = 4\)
\(EF = \left| {\overrightarrow {EF} } \right| = \sqrt {{{( - 4)}^2} + {4^2}} = 4\sqrt 2 \)
\(\begin{array}{l}\cos D = \cos \left( {\overrightarrow {DE} ,\overrightarrow {DF} } \right) = \frac{{\overrightarrow {DE} .\overrightarrow {DF} }}{{DE.DF}} = \frac{{4.0 + 0.4}}{{4.4}} = 0 \Rightarrow \widehat D = 90^\circ \\\cos E = \cos \left( {\overrightarrow {ED} ,\overrightarrow {EF} } \right) = \frac{{\overrightarrow {ED} .\overrightarrow {EF} }}{{ED.EF}} = \frac{{\left( { - 4} \right).\left( { - 4} \right) + 0.4}}{{4.4\sqrt 2 }} = \frac{{\sqrt 2 }}{2} \Rightarrow \widehat E = 45^\circ \\\widehat F = 180^\circ - \widehat D - \widehat E = 180^\circ - 90^\circ - 45^\circ = 45^\circ \end{array}\)
Cho tam giác DEF và tam giác HKI có D ^ = H ^ = 90 o , E ^ = K ^ , DE=HK. Biết F ^ = 80 o . Số đo góc I là:
A. 70 °
B. 80 °
C. 90 °
D. 100 °
Cho tam giác ABC đều . Trên tia đối các tia AB , BC , CA lấy D , E , F sao cho AD = BE = CF . Chứng minh rằng : tam giác DEF đều . Tam giác ABC và tam giác DEF có cùng trọng tâm
Xét ΔDAF và ΔEBD có
DA=EB
góc DAF=góc EBD(=120 độ)
AF=BD
=>ΔDAF=ΔEBD
=>DF=ED
Xét ΔFCE và ΔEBD có
FC=EB
góc FCE=góc EBD
CE=BD
=>ΔFCE=ΔEBD
=>FE=ED
=>FE=ED=DF
=>ΔDEF đều
Cho tam giác DEF vuông tại D có góc F bằng 55 độ
a) Tính góc E . So sánh các cạnh của tam giác DEF?
b) Vẽ phân giác EH của tam giác DEF . Lấy điểm K trên cạnh EF sao cho DE = EK . Chứng minh tam giác EDH = tam giác EKH và DKH cân
c) Vẽ một đường thẩng a bất kì đi qua D .Trên cạnh DE lấy điểm I sao cho DF = DI . Kẻ FN và IM vuông góc với đường thẳng a . Chứng minh FN mũ 2 + IM mũ 2 = IF mũ 2 - ID mũ 2
Giusp em câu c thôi ạ
a: \(\widehat{E}=35^0\)
Xét ΔDEF có \(\widehat{E}< \widehat{F}< \widehat{D}\)
nên FD<DE<EF
b: Xét ΔEDH vuông tại D và ΔEKH vuông tại K có
EH chung
\(\widehat{DEH}=\widehat{KEH}\)
Do đó: ΔEDH=ΔEKH
Suy ra: HD=HK
hay ΔHDK cân tại H
a: ˆE=350E^=350
Xét ΔDEF có ˆE<ˆF<ˆDE^<F^<D^
nên FD<DE<EF
b: Xét ΔEDH vuông tại D và ΔEKH vuông tại K có
EH chung
ˆDEH=ˆKEHDEH^=KEH^
Do đó: ΔEDH=ΔEKH
Suy ra: HD=HK