Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Sonyeondan Bangtan
Xem chi tiết
nguyễn hoàng lê thi
Xem chi tiết
Hoàng Tử Hà
12 tháng 12 2020 lúc 23:16

15/ Mũ 4=> có 4+1=5 số hạng=> số hạng chính giữa là: \(C^2_4.3^{4-2}.x^2.2^2y^2=58x^2y^2\)

18/ \(x.x^k=x^7\Rightarrow k=6\)

\(C^6_9.3^6.2^3=489888\)

19/ \(C^7_7+C^7_8.\left(-1\right)^7+C^7_9.2^2=...\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 9 2019 lúc 15:47

Hàn Nhật Hạ
Xem chi tiết
Quách Minh Hương
Xem chi tiết
Mai Anh
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 11 2021 lúc 15:47

\(C_n^0+C_n^1+C_n^2=11\)

\(\Rightarrow1+n+\dfrac{n\left(n-1\right)}{2}=11\)

\(\Leftrightarrow n^2+n-20=0\Rightarrow\left[{}\begin{matrix}n=4\\n=-5\left(loại\right)\end{matrix}\right.\)

\(\left(x^3+\dfrac{1}{x^2}\right)^4\) có SHTQ: \(C_4^k.x^{3k}.x^{-2\left(4-k\right)}=C_4^k.x^{5k-8}\)

\(5k-8=7\Rightarrow k=3\)

Hệ số: \(C_4^3=4\)

Ngọc Kiềuu
Xem chi tiết
CCuộc SSống TThời NNay
11 tháng 11 2016 lúc 20:46

210

Diệp Cẩm Tước
24 tháng 11 2016 lúc 22:38

210

Dream Anna
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 12 2021 lúc 17:55

Xét khai triển: \(\left(x+1\right)^n\) với \(n\ge5\)

SHTQ: \(C_n^k.x^k\)

Số hạng chứa \(x^5\Rightarrow k=5\) có hệ số \(C_n^5\)

Hệ số của \(x^5\) trong khai triển đã cho:

\(C_6^5+C_7^5+C_8^5+...+C_{12}^5=...\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
12 tháng 2 2019 lúc 7:02

Nguyễn Xuân Tài
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 4 2023 lúc 23:43

a: SHTQ là: \(C^k_{10}\cdot x^{10-k}\cdot\left(\dfrac{2}{x}\right)^k=C^k_{10}\cdot2^k\cdot x^{10-2k}\)

Số hạng ko chứa x tương ứng với 10-2k=0

=>k=5

=>SH đó là 8064

b: SHTQ là; \(C^k_6\cdot x^{6-k}\cdot\left(\dfrac{2}{x^2}\right)^k=C^k_6\cdot2^k\cdot x^{6-3k}\)

Số hạng ko chứa x tương ứng với 6-3k=0

=>k=2

=>Số hạng đó là 60

c: SHTQ là: \(C^k_5\cdot\left(3x^3\right)^{5-k}\cdot\left(-\dfrac{2}{x^2}\right)^k\)

\(=C^k_5\cdot3^{5-k}\cdot\left(-2\right)^k\cdot x^{15-5k}\)

SH chứa x^10 tương ứng với 15-5k=10

=>k=1

=>Hệ số là -810