Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
23 tháng 9 2023 lúc 10:46

a) Phát biểu “Mọi số tự nhiên n đều chia hết cho 3” là một phát biểu sai (vì 2 là số tự nhiên nhưng 2 không chia hết cho 3). Đây là một mệnh đề.

b) Phát biểu “Tồn tại số tự nhiên n đều chia hết cho 3” là một phát biểu đúng (chẳng số 3 là số tự nhiên và 3 chia hết cho 3). Đây là một mệnh đề.

Phạm Nhật Anh
Xem chi tiết
Trần Thị Loan
10 tháng 11 2015 lúc 23:21

a) Nếu n = 5k => n(n+5) = 5k.(5k + 5) = 25k(k+1) chia hết cho 25

Nếu n = 5k +1 => n(n + 5) = (5k + 1).(5k+6) = 5k.5k + 5k.6 + 1.5k + 6 = (25k2 + 35k) + 6 không chia hết cho 5

Nếu n = 5k + 2 => n(n + 5) = (5k + 2)(5k + 7) = (25k2 + 35k + 10k) + 14 không chia hết cho 5

Nếu n = 5k + 3 => n(n + 5) = (5k + 3)(5k + 8) = (25k+ 55k) + 24 không chia hết cho 5

Nếu n = 5k + 4 => n(n + 5) = (5k + 4).(5k + 9) = (25k2 + 45k + 20k) + 36 không chia hết cho 5

Vậy với mọi n thì n(n+5) hoặc chia hết cho 25 hoặc không chia hết cho 5

b,c tương tự:

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 8 2018 lúc 2:19

Mệnh đề: "Với mọi số nguyên n không chia hết cho 3, n 2 − 1 chia hết cho 3". 

Mệnh đề phủ định của mệnh đề trên là  "Tồn tại số nguyên n không chia hết cho 3,  n 2 − 1  không chia hết cho 3".

Mệnh đề phủ định của mệnh đề  " ∀ x ∈ X ; ​​   P ( x ) " là  " ∃ x ∈ X ; ​​   P ( x ) ¯ "

Đáp án A

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
23 tháng 9 2023 lúc 10:44

Thay : “số tự nhiên n chia hết cho 6” bới P, “số tự nhiên n chia hết cho 3” bởi  Q, ta được mệnh đề R có dạng: “Nếu P thì Q”

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
23 tháng 9 2023 lúc 10:47

a) Với n = 32, ta có các mệnh đề P, Q khi đó là:

P: “Số tự nhiên 32 chia hết cho 16”;

Q: “Số tự nhiên 32 chia hết cho 8”;

Mệnh đề P ⇒ Q: “Nếu số tự nhiên 32 chia hết cho 16 thì số tự nhiên 32 chia hết cho 8”.

Đây là mệnh đề đúng vì 32 chia hết cho 16 và 8.

b) Với n = 40, ta có các mệnh đề P, Q khi đó là:

P: “Số tự nhiên 40 chia hết cho 16”;

Q: “Số tự nhiên 40 chia hết cho 8”;

Mệnh đề đảo của mệnh đề P ⇒ Q là mệnh đề Q ⇒ P: “Nếu số tự nhiên 40 chia hết cho 8 thì số tự nhiên 40 chia hết cho 16”.

Mệnh đề đảo này là mệnh đề sai. Vì 40 chia hết cho 8 nhưng 40 không chia hết cho 16.

Tai Lam
Xem chi tiết
Akai Haruma
20 tháng 9 2023 lúc 20:56

Lời giải:
$n^3-n=n(n^2-1)=n(n-1)(n+1)$ là tích của 3 số nguyên liên tiếp nên luôn chia hết cho $3$

Do đó mệnh đề $P$ đúng.

duc phuc
Xem chi tiết
Akai Haruma
17 tháng 8 2021 lúc 0:56

a. Đúng, vì $9\vdots 3$ nên $n\vdots 9\Rightarrow n\vdots 3$

b. Sai. Vì cho $n=2\vdots 2$ nhưng $2\not\vdots 4$

c. Đúng, theo định nghĩa tam giác cân

d. Sai. Hình thang cân là 1 phản ví dụ.

Akai Haruma
17 tháng 8 2021 lúc 0:58

e.

Sai. Cho $m=-1; n=-2$ thì $m^2< n^2$

f.

Đúng, vì $a\vdots c, b\vdots c$ nên trong $ab$ có chứa nhân tử $c$

g.

Sai. Hình bình hành là hình thang có 2 cạnh bên bằng nhau nhưng không phải hình thang cân.

 

Hồ Lê Phú Lộc
Xem chi tiết
Lê Song Thanh Nhã
17 tháng 7 2015 lúc 9:55

a. Gọi 3 số đó là a; a+1; a+2

Ta có: a+ a+1 + a+2 = 3a +3

3 chia hết cho 3 => 3a chia hết cho 3

=> 3a+3 chia hết cho 3

=> Tổng của 3 số tự nhiên liên tiếp luôn chia hết cho 3

Tương tự câu b, c, d nha

Nguyễn Trần Anh Thơ
17 tháng 7 2015 lúc 10:09

 a) Xét 3 số tự nhiên liên tiếp a; a+1 ; a +2

Nếu a chia hết cho 3 thì a=3k (k thuộc N) khi đó a+1= 3k+1, còn a+2=3k+2  là những số không chia hết cho 3

Nếu a=3k+1 thì a+1=3k+2 không chia hết cho 3 còn a+2=3k+3 chia hết cho 3

Nếu a=3k+2 thì a+2=3k+4 không chia hết cho 4, còn a+1=3k+3 chia hết cho 3

 

Le thi minh thu
2 tháng 2 2016 lúc 20:17

b)gói 5 số đó là

n-1;n;n+1;n+2;n+3

ta có:(n-1)+n+(n+1)+(n+2)+(n+3)=5n+5 chia hết cho 5

vậy tổng 5 số nguyên liên tiếp là bội của 5

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
23 tháng 9 2023 lúc 10:46

a) Phát biểu mệnh đề phủ định: “Mọi số nguyên đều không chia hết cho 3”

b) Phát biểu mệnh đề phủ định: “Tồn tại số thập phân không viết được dưới dạng phân số”