Cho tam giác ABC có: B ^ = C ^ = 45 o . Khi đó tam giác ABC là tam giác gì? Chọn kết luận đúng nhất
A. Tam giác cân
B. Tam giác vuông cân
C. Tam giác vuông
D. Tam giác đều
câu 1: Cho tam giác ABC có B=C=45 độ.khi đó tam giác ABC là tam giác gì
Lời giải:
$\widehat{A}+\widehat{B}+\widehat{C}=180^0$
$\Rightarrow \widehat{A}=180^0-\widehat{B}-\widehat{C}=180^0-45^0-45^0=90^0$
$\Rightarrow$ tam giác $ABC$ là tam giác vuông tại $A$. Mà $\widehat{B}=\widehat{C}$ nên $ABC$ là tam giác vuông cân ở A
Cho tam giác ABC có AB = 12; \(\widehat B = {60^o}\); \(\widehat C = {45^o}\). Tính diện tích của tam giác ABC.
Áp dụng định lí sin trong tam giác ABC, ta có:
\(\frac{{AC}}{{\sin B}} = \frac{{AB}}{{\sin C}}\)
\( \Rightarrow AC = \sin B.\frac{{AB}}{{\sin C}} = \sin {60^o}.\frac{{12}}{{\sin {{45}^o}}} = 6\sqrt 6 \)
Lại có: \(\widehat A = {180^o} - ({60^o} + {45^o}) = {75^o}\)
\( \Rightarrow \)Diện tích tam giác ABC là:
\(S = \frac{1}{2}AB.AC.\sin A = \frac{1}{2}.12.6\sqrt 6 .\sin {75^o} \approx 85,2\)
Vậy diện tích tam giác ABC là 85,2.
Cho tam giác ABC có BC = 4cm, \(\widehat{B}=70^o\), \(\widehat{C}=45^o\). Tính độ dài AC và diện tích tam giác ABC?
Kẻ đường cao AH ứng với BC, đặt \(CH=x\Rightarrow BH=4-x\)
Trong tam giác vuông ABH
\(tanB=\dfrac{AH}{BH}\Rightarrow AH=BH.tanB=\left(4-x\right).tan70^0\)
Trong tam giác vuông ACH:
\(tanC=\dfrac{AH}{CH}\Rightarrow AH=CH.tanC=x.tan45^0=x\)
\(\Rightarrow\left(4-x\right)tan70^0=x\)
\(\Leftrightarrow\left(1+tan70^0\right)x=4.tan70^0\)
\(\Leftrightarrow x=\dfrac{4tan70^0}{1+tan70^0}\approx2,2\left(cm\right)\)
\(\Rightarrow CH=AH=2,2\left(cm\right)\)
\(AC=\sqrt{CH^2+AH^2}=AH\sqrt{2}\approx3,1\left(cm\right)\)
\(S_{ABC}=\dfrac{1}{2}AH.BC=\dfrac{1}{2}.2,2.4=4,4\left(cm^2\right)\)
Cho tam giác ABC nhọn có góc A=45 độ. Các đường cao BB',CC' cách nhau tại H. O là giao điểm các đường trung trực cạnh AB và AC.
a) Tứ giác OB'HC' là hình gì?
b) CM: tam giác AB'C' và tam giác ABC đồng dạng
c) CM: S tam giác ABC = 2S tam giác AB'C'
b) Tam giác ACC' đồng dạng tam giác ABB'
=> Tam giác AB'C' đồng dạng tam giác ABC
Cho tam giác ABC có \(AB = 100,\widehat B = {100^o},\widehat C = {45^o}.\) Tính:
a) Độ dài các cạnh AC, BC
b) Diện tích tam giác ABC.
a)
Ta có: \(\widehat A = {180^o} - (\widehat B + \widehat C)\) \( \Rightarrow \widehat A = {180^o} - ({100^o} + {45^o}) = {35^o}\)
Áp dụng định lí sin trong tam giác ABC ta có:
\(\frac{{AB}}{{\sin C}} = \frac{{AC}}{{\sin B}} = \frac{{BC}}{{\sin A}}\)
\( \Rightarrow \left\{ \begin{array}{l}AC = \sin B.\frac{{AB}}{{\sin C}}\\BC = \sin A.\frac{{AB}}{{\sin C}}\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}AC = \sin {100^o}.\frac{{100}}{{\sin {{45}^o}}} \approx 139,3\\BC = \sin {35^o}.\frac{{100}}{{\sin {{45}^o}}} \approx 81,1\end{array} \right.\)
b)
Diện tích tam giác ABC là: \(S = \frac{1}{2}.BC.AC.\sin C = \frac{1}{2}.81,1.139,3.\sin {45^o} \approx 3994,2.\)
Cho tam giác ABC. Trên đường trung tuyến AM của tam giác đó, lấy hai điểm D, E sao cho AD = DE = EM. Gọi O là trung điểm của đoạn thẳng DE. Khi đó trọng tâm của tam giác ABC là:
(A) Điểm D
(B) Điểm E
(C) Điểm O
(D) Cả (A), (B), (C) đều sai
Trên đường trung tuyến AM có AD = DE = EM nên AE = 2/3 AM.
Do khoảng cách từ trọng tâm tới một đỉnh của tam giác bằng 2/3 độ dài đường trung tuyến đi qua đỉnh đó nên E là trọng tâm của tam giác ABC. Chọn (B) Điểm E.
Cho tam giác ABC cân tại A , biết góc B =45 độ , AB=5cm và tam giác ABC=tam giác DEF . Khi đó diện tích tam giác DEF bằng bao nhiêu cm2
Cho tam giác ABC có góc B = 45o, Góc C = 30o, BM là đường trung tuyến của tam giác ABC. Tính số đo của góc AMB.
Cho tam giác ABC có A=75 , C=45 và AC=a\(\sqrt{2}\) . Vẽ đường cao AK
a, Tính AB , KC theo a
b, Gọi H là trực tâm của tam giác ABC và O là tâm đường tròn ngoại tiếp tam giác ABC . Tính OHC
c, Gọi I là tâm đt nội tiếp tam giác ABC . Tính bán kính đt ngoại tiếp tam giác HOT theo a