Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn nhi
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 10 2023 lúc 19:26

a: Khi x=2 và y=-3 thì \(x^2+2y=2^2+2\cdot\left(-3\right)=4-6=-2\)

b: \(A=x^2+2xy+y^2=\left(x+y\right)^2\)

Khi x=4 và y=6 thì \(A=\left(4+6\right)^2=10^2=100\)

c: \(P=x^2-4xy+4y^2=\left(x-2y\right)^2\)

Khi x=1 và y=1/2 thì \(P=\left(1-2\cdot\dfrac{1}{2}\right)^2=\left(1-1\right)^2=0\)

buidangduong
Xem chi tiết
Hiền Nguyễn
Xem chi tiết
bepro_vn
3 tháng 9 2021 lúc 14:15

Từ gt ta có x^2+y^^2=xy+1

=>P=(x^2+y^2)^2-2x^2y^2-x^2y^2

=(xy+1)2-2x2y2-x2y2

=x2y2+xy+1-3x2y2=-2x2y2+xy+1

=......

Nguyễn Việt Lâm
6 tháng 9 2021 lúc 17:38

\(1=x^2+y^2-xy\ge2xy-xy=xy\Rightarrow xy\le1\)

\(1=x^2+y^2-xy\ge-2xy-xy=-3xy\Rightarrow xy\ge-\dfrac{1}{3}\)

\(\Rightarrow-\dfrac{1}{3}\le xy\le1\)

\(P=\left(x^2+y^2\right)^2-2\left(xy\right)^2-\left(xy\right)^2=\left(xy+1\right)^2-3\left(xy\right)^2=-2\left(xy\right)^2+2xy+1\)

Đặt \(xy=t\in\left[-\dfrac{1}{3};1\right]\)

\(P=f\left(t\right)=-2t^2+2t+1\)

\(f'\left(t\right)=-4t+2=0\Rightarrow t=\dfrac{1}{2}\)

\(f\left(-\dfrac{1}{3}\right)=\dfrac{1}{9}\) ; \(f\left(\dfrac{1}{2}\right)=\dfrac{3}{2}\) ; \(f\left(1\right)=1\)

\(\Rightarrow P_{max}=\dfrac{3}{2}\) ; \(P_{min}=\dfrac{1}{9}\)

Quân Nguyễn
Xem chi tiết
YangSu
21 tháng 2 2023 lúc 17:25

\(a,\dfrac{y-1}{y-2}-\dfrac{y+3}{y-4}=\dfrac{-2}{\left(y-2\right)\left(y-4\right)}\)

\(\Leftrightarrow\dfrac{\left(y-1\right)\left(y-4\right)-\left(y+3\right)\left(y-2\right)+2}{\left(y-2\right)\left(y-4\right)}=0\)\(\left(dkxd:y\ne4;2\right)\)

\(\Leftrightarrow y^2-4y-y+4-y^2+2y-3y+6+2=0\)

\(\Leftrightarrow-6y+12=0\)

\(\Leftrightarrow y=2\)\(\left(ktm\right)\)

Vậy ko có bất kì giá trị y nào để 2 biểu thức bằng nhau

\(b,\dfrac{8y}{y-7}+\dfrac{1}{7-y}=8\)

\(\Leftrightarrow\dfrac{8y}{y-7}-\dfrac{1}{y-7}=8\)\(\left(dkxd:y\ne7\right)\)

\(\Leftrightarrow8y-1-8\left(y-7\right)=0\)

\(\Leftrightarrow8y-1-8y+56=0\)(Vô lý)

Vậy ko có bất kì giá trị y nào để biểu thức có giá trị = 8

 

Trần Thị Ngọc
Xem chi tiết
headsot96
15 tháng 7 2019 lúc 14:33

a)\(\left(x+4\right)\left(x^2-4x+16\right)-x^3+5=x^3+64-x^3+5=69\)

Vậy biểu thức trên ko phụ thuộc vào biến x . 

b)\(y\left(x^2-y^2\right)\left(x^2+y^2\right)-y\left(x^4-y^4\right)=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)=0\)

Vậy biểu thức trên ko phụ thuộc vào biến x . 

Phạm Thị Na
Xem chi tiết
Hoàng Phúc
27 tháng 3 2016 lúc 16:05

\(N=2x^4+3x^2y^2+y^4+y^2\)

\(N=2x^4+2x^2y^2+x^2y^2+y^4+y^2\)

\(N=2x^2x^2+2x^2y^2+x^2y^2+y^2y^2+y^2\)

\(N=2x^2\left(x^2+y^2\right)+y^2\left(x^2+y^2+1\right)\)

Thay x2+y2=1 vào ta được:

\(N=2x^2.1+y^2.\left(1+1\right)=2x^2+2y^2=2\left(x^2+y^2\right)=2.1=2\)

Vậy N=2
 

Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 3 2022 lúc 19:32

\(N=3x^4+3x^2y^2+x^2y^2+y^4+2y^2\)

\(=\left(x^2+y^2\right)\left(3x^2+y^2\right)+2y^2\)

\(=3x^2+3y^2=3\)

Hồ Thị Thùy Trang
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 7 2023 lúc 15:33

Sửa đề: N=2x^4+3x^2y^2+y^4+y^2

N=2x^4+2x^2y^2+x^2y^2+y^4+y^2

=(x^2+y^2)(2x^2+y^2)+y^2

=2x^2+y^2+y^2

=2(x^2+y^2)

=2

Hatsune Miku
Xem chi tiết
Minh Nguyen
7 tháng 3 2020 lúc 8:41

\(ĐKXĐ:\hept{\begin{cases}y\ne2\\y\ne4\end{cases}}\)

\(\frac{y-1}{y-2}-\frac{3+y}{y-4}=\frac{-2}{\left(y-2\right)\left(y-4\right)}\)

\(\Leftrightarrow\frac{\left(y-1\right)\left(y-4\right)-\left(3+y\right)\left(y-2\right)}{\left(y-2\right)\left(y-4\right)}=\frac{-2}{\left(y-2\right)\left(y-4\right)}\)

\(\Leftrightarrow y^2-5y+4-y^2-y+6=-2\)

\(\Leftrightarrow-6y+10=-2\)

\(\Leftrightarrow-6y+12=0\)

\(\Leftrightarrow y=2\)(KTM)
Vậy tập nghiệm của phương trình là \(S=\varnothing\)

Khách vãng lai đã xóa
Vũ Ngọc Thảo Nguyên
Xem chi tiết